NicelLabel

NicelLabel Automation User Guide

English Edition
Rev-1213

© 2013 Euro Plus d.o.o. All rights reserved.

Euro Plus d.o.o.
Poslovna cona A 2
SI-4208 Sencur, Slovenia
tel.: +386 4 280 50 00
fax: +386 4 233 11 48
www.nicelabel.com
info@nicelabel.com

http://www.nicelabel.com/
mailto:info@nicelabel.com

Table Of Contents

Table of Contents 2
Welcome to NiceLabel Automation .. . 4
Typographical Conventions 5
Setting Up Application 6
System Requirements ...l 6
Installation .. L 6
ACHIVAtION .. 6
Trial MOGE . . o oo 7
Understanding Filters 8
Understanding Filters ... 8
Configuring Structured Text Filter 9
Configuring Unstructured Data Filter 11
Configuring XML fIlter . . L 16
Setting Label and Printer Names from Input Data 20
Configuring Triggers 21
T oS ... 21
DefiNing Tl g erS - ..o 22
Using Variables ... i 32
USIng ACHiONS .. 35
TeSting Tl gerS ... 69
Protecting Trigger Configuration 71
Running and Managing Triggers 72
Deploying Configuration 72
Event Logging Options i 72
Managing TriggerS . 73
Using Event LOg ... 74
Performance and Feedback Options 76
Caching Files ... 76
Synchronous Print Mode 76
Print Job Status Feedback 77
High-availability (Failover) Cluster 78
Load-balancing Cluster 79
Understanding Data Structures 8o
Understanding Data Structures 80
Binary Files ... L 80

Command Files .. 81

Compound CSV 81
Legacy Data ...l 81
Text Database 82
XML Data 82
Reference and Troubleshooting 84
Command File Ty Peso . 84
Custom CommandS 90
Access to Network Shared ReSOUTICES 94
Changing Multi-threaded Printing Defaults 95
Controlling Automation with Command-line Parameters .. 95
Entering Special Characters 96
List of Control CoAes 97
Offline MOUE oo 98
Running in Service MOAe L 98
Tips and Tricks for Using Variables in Actions 99
Tracing Mode 99
ExXamiples il 100
B A DO . 100
Technical SUPPOTt 101
Online SUPPOTt .o 101

Welcome To NicelLabel Automation

NiceLabel Automation is an automated printing application that integrates label printing into exist-
ing systems (software applications, production lines, weight-scales, etc).

It represents the optimal business label printing system by synchronizing business events with
label production. Automated printing without human interaction is by far the most effective way to
remove user errors and maximize performance.

Automating label printing with a trigger-based application revolves around 3 core processes.
Print event trigger

Automated label printing is triggered by a business operation. NiceLabel Automation is set to super-
vise a folder, file, or a communication port. When a business operation takes place, a file change or
incoming data is detected by the application. This triggers the label printing process.

Learn more about various Triggers:
o File trigger
o Serial port trigger
o Database trigger
e TCP/IP trigger
o HTTP trigger
e Web Service trigger
Label data extraction and placement

Once the printing is triggered, the NiceLabel Automation extracts label data and inserts it into var-
iable fields on the label design.

Data extraction Filters support:
o Structured text files
e Unstructured text files
e Various XML files
Printing action

When the data has been matched with variable fields on the label, NiceLabel Automation performs
actions. Basic operations usually include the Open Label and Print Label actions, but a host of
other actions are available, including printer selection, batch operation, data sending, and similar.

See more information about basic and advanced printing Actions.

Typographical Conventions

Text that appears in bold refers to menu names and buttons.

Text that appears in italic refers to options, confirming actions like Read only and locations like
Folder.

Text enclosed in <Less-Than and Greater-Than signs> refers to keys from the desktop PC keyboard
such as <Enter>.

Variables are enclosed in [brackets].

This is the design of a note.

This is the design of an example.

This is the design of a best practice.

This is the design of a warning.

Setting Up Application

System Requirements
e CPU: Intel or compatible x86 family processor
e Memory: 512 MB or more RAM
o Hard drive: 1 GB of available disk space

e Operating system: One of the 32-bit or 64-bit Windows operating systems — Windows XP
Service Pack 3, Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows
Server 2008, Windows Server 2008 R2, Windows 7, Windows 8, Windows Server 2012

e Microsoft .NET Framework Version 4.0
o Display: 1024 x768 or higher resolution monitor
e Label Designer:

e Recommended: NiceLabel Designer Pro or NiceLabel PowerForms Desktop, both V6.0
or higher

e Minimum: NiceLabel Pro V5.4

Recommended printer drivers: NiceLabel Printer Drivers V5.1 or higher

Installation

Before you begin with the installation, make sure your infrastructure is compatible with the System
Requirements.

To install NiceLabel Automation, do the following:

1. Insert NiceLabel Automation DVD.
The main menu application will start automatically.

If the main menu application does not start, double click the START . EXE file on the DVD.

2. Click the Install NiceLabel products.
The installation of NiceLabel Automation will start.

3. Follow the Setup Wizard prompts.

During the installation the Setup will prompt for the user name under which the NiceLabel Auto-
mation service will run under. Make sure to select some real user name, because service will
inherit that user name's privileges. For more information, see topic Running in Service Mode.

Activation

You must activate NiceLabel Automation software to enable processing of the configured triggers.
The activation procedure requires the Internet connection, preferably on the machine where your are
installing the software. The same activation procedure is used to activate the trial license key.

You can activate the software either from Automation Builder or Automation Manager and achieve
the same effect.

Activation in Automation Builder
1. Run Automation Builder.

2. Select File -> Tools -> Manage License.
The Activation Wizard will start.

3. Select the activation method.

o Single user software key. In this case you want to activate NiceLabel Automation
as stand-alone server. Click Next and follow on-screen instructions.

o Enterprise Print Manager license server. In this case you want to activate Nice-
Label Automation from the Enterprise Print Manager (EPM). Click Next and select
the EPM server, which already has the NiceLabel Automation license activated. Refer
the EPM installation guide for the steps to activate products inside EPM.

Activation in Automation Manager
1. Run Automation Manager.
2. Go to About tab.
3. Click Enter License Key.
4. Select the activatio method.

o Single user software key. In this case you want to activate NiceLabel Automation
as stand-alone server. Click Next and follow on-screen instructions.

o Enterprise Print Manager license server. In this case you want to activate Nice-
Label Automation from the Enterprise Print Manager (EPM). Click Next and select
the EPM server, which already has the NiceLabel Automation license activated. Follow
the EPM installation guide for the necessary activation steps.

Activation without Internet Access

The automatically activate NiceLabel Automation you must have the connection to the Internet dur-
ing the activation procedure. You install NiceLabel Automation on the server without the Internet
connection, but you will still need to have the Internet connection on some other machine, where
the activation procedure will be completed.

Do the following;:

1. Follow the activation procedure.

2. Typein the License Key, the Registration Number will be generated.
Click the button Save registration data.

Copy the file to USB key and go to the computer with Internet Access.

o b

Open the URL from the saved file.
The Web activation page will open.

6. Make sure values for all fields are properly entered, then click Activate button.
Remember the Activation Code and enter it back on the server with NiceLabel Automation.

8. Click Finish button.

Trial Mode

Trial mode allows you to test NiceLabel Automation product for up to 30 days. Trial mode has the
same functionality as running the licensed version, so it allows evaluation of the product prior the
purchase. The Automation Manager will continuously display the trial notification message and the
number if trial days remaining. When trial mode expires, the NiceLabel Automation service will no
longer process triggers. The countdown of 30 days begins from the day of the installation.

You can extend the trial mode by contacting your NiceLabel reseller and requesting another trial
license key. You have to activate the trial license key. For more information, see topic Activation.

Understanding Filters

Understanding Filters

NiceLabel Automation uses filters to define structure of the data received by triggers. Every time a
trigger receives a data, that data is parsed through one or many filters, which extract the values
you need. Every filter is configured with rules that describe how to identify fields in the data. As a
result, the filter provides a list of fields and the extraction logic for field values - field:value
pairs.

Filter Types

For more information, see topic Configuring Structured Text Filter, Configuring Unstructured Data
Filter and Configuring XML filter.

Data Structure

The filter complexity depends on the data structure. The data that is already in the structured
form, such as CSV or XML, can be easily extracted. In this case the field names are already defined
with the data. Extracting of field:value pairs is quick. In case of data without a clear structure,
it takes more time to define the extraction rules. Such data might be in a form of export of doc-
uments and reports from legacy system, intercepted communication between devices, captured
print stream, and similar.

NiceLabel Automation supports various types of input data that can be all parsed by one of the sup-
ported filter types. You must choose the correct filter to match the type of the incoming data. For
example, you would use Structured Text filter for incoming CSV data and you would use

XML filter for incoming XML data. For any unstructured data you would use Unstructured
Data filter. For more information, see topic Understanding Data Structures.

Extracting Data

Filter is just a set of rules and doesn't do any extraction by itself. To run the filter you must run the
Use Data Filter action. The action will execute filter rules against the data and extract the values.

Every trigger can execute as many of Use Data Filter actions as you need. If you receive compound
input data that cannot be parsed by a single filer alone, you can define several filters and execute
their rules in Use Data Filters running one after another. At the end you can use the extracted
values from all actions at once.

Mapping Fields to Variables

To use the extracted values, you have to save them into variables. The Use Data Filter action does-
n't only extract values, but also saves them to variables. To configure this process, you have to map
the variable to the respective field. Value of the field will then be saved to a mapped variable.

It's a good practice to define fields and variables with the same names. In this case the auto-
mapping feature will link variables to the fields of the same names, eliminating the manual
process.

Auto-mapping is available for all supported filter types. With auto-mapping enabled, the Use Data
Filter action will extract values and automatically map them to the variables of the same names as
field names. For more information, see topic Enabling Dynamic Structure for Structured Text filter,
Defining Assignment Areas for Unstructured Data filter and Defining XML Assignment Area for
XML filter.

Defining Actions to Run for Extracted Data

Usually you want to run some actions against the extracted data, such as Open Label, Print

Label, or some of the outbound connectivity actions. It is critically important that you nest your
actions under the Use Data Filter action. This will ensure that nested actions run for each data
extraction. For example, if you have CSV file with 5 lines, the nested action will also run 5 times,
once for each data extraction. If the actions are not nested, they will only execute one time and con-
tain data from the last data extraction. For example above, 5th CSV line would print, but not also
the first four lines. If you use Sub Areas make sure to nest your action under the correct place-
holder.

Configuring Structured Text Filter

Structured Text Filter

To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever you receive a structured text file. These are text files where fields are iden-
tified by one of the methods.

o Fields are delimited by a characters. Usual delimiters are comma or semicolon. CSV
(comma separated values) is a typical example of a file.

o Fields contain fixed number of characters. In other words, fields are defined by the
fixed-width columns.

If the first line of data contains the field names, you can import these names in the configuration
and skip the step to manually define field names. The filter will then define the rules about what
the field names are and their lengths (only in case of fixed-width data columns).

Defining Structure
To define the structure of the text file, you have the following options.

« Importing structure using the Text Fle Wizard. In this case click the Import Data
Structure button in the ribbon and follow on-screen instructions. After you finish the wiz-
ard, the type of text database and all fields will be defined. If the first line of data contains
field names, the Wizard can import them. This is the recommended method, if trigger will
always receive data of the same structure.

e Manually defining the fields. In this case you have to manually define the type of the
data (delimited fields or fixed-width fields and then define the field names. For more infor-
mation, see topic Defining Fields.

« Dynamically read the fields. In this case the trigger might receive data of different struc-
ture, such as new field names, and you don't want to update the filter for each structural
change. Dynamic support will automatically read all fields in the data, no matter if there
exist new fields, or some of the old fields are missing. For more information, see topic Ena-
bling Dynamic Structure.

The Data Preview section simplified the configuration. The result of defined filter rule highlights in
the preview area with every configuration change. You can see what data would be extracted with
each rule.

Defining Fields
The definition of fields is very easy for structured text files. You have two options.

e Delimited defines the fields. In this case you have delimited, such as comma or sem-
icolon between the fields. You just have to define the field names in the same order as they
will appear in the data received by a trigger.

Fixed-width fields. In this case you have to define the field names in the same order as
they will appear in the data received by a trigger and define the number of characters the
field will occupy. That many characters will be read from the data for this field.

Data Preview

This section provides the preview of the field definition. When the defined item is selected, the pre-
view will highlight its placement in the preview data.

Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the pre-
view file name, the new file name will be saved.

Open. Selects some other file upon which you want to execute the filter rules.

Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

Format Text

This section defines the string manipulation functions that will be applied to the selected variables
or fields. You can select one or several functions. The functions will be applied in the order as
selected in the user interface, from top to bottom.

Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

Delete opening closing characters. Deletes the first occurrence of the selected opening
and closing characters that are found in the string.

Example: if you use "{" for opening character and "}" for the closing character, the input
string { {selection}} will be converted to {selection}.

Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

There are several implementations of the regular expressions in use. NiceLabel Auto-
mation uses the .NET Framework syntax for the regular expressions. For more infor-
mation, see Knowledge Base article KB250.

Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are char-
acters with decimal ASCII values between 0-31 and 127-159.

Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-159.

Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

Search and delete everything after. Finds the provided string and deletes all characters
from the string until the end of the data. The found string itself can also be deleted.

Enabling Dynamic Structure

Structured Text filter has ability to automatically identify the fields and their values in the data,
eliminating the need of manual variable to field mapping.

10

http://kb.nicelabel.com/index.php?t=faq&id=250

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has
changed; there might be new fields, or some old fields are no longer available. The filter will auto-
matically identify structure. At the same time the field names and values (name : value pairs) will
be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be done
dynamically. You even don't have to define label variables into trigger configuration. The action will
assign field values to the label variables of the same name without requiring the variables imported
from the label. However, this rule applies to Print Label action alone. If you want to use the field
values in any other action, you will have to define variables in the trigger, while still keeping the
automatic variable to field mapping.

No error will be raised if the field available in the input data doesn't have a matching label var-
iable. The missing variables are silently ignored.

Configuring the dynamic structure

To configure the dynamic structure, enable the option Dynamic structure in the Structured Text
filter properties.

e The first line of data must contain the field names.

o The line that you select for Start import at line must be the line with the field names
(usually the first line in data).

e The data structure must be delimited.

Configuring Unstructured Data Filter

Unstructured Data Filter

To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever trigger receives non-structured data, such as documents and reports
exported from legacy system, intercepted communication between devices, captured print stream,
and similar. The filter allows you to extract individual fields, fields in the repeatable sub areas, and
even name:value pairs.

The items you can use to configure the filter:

o Field. Specifies the location of field data between field-start and field-end location. There are
various options to define the field location, from hard-coding the position to enable relative
placements. You must map the defined fields to respective variables in the Use Data Filter
action. For more information, see topic Defining Fields.

e Sub area. Specifies the location of repeatable data. Each sub area defines at least one data
block, which in turn contains data for labels. There can be sub areas defined within sub
areas, allowing for definition of complex structures. You can define fields within each data
block. You must map the defined fields to respective variables in the Use Data Filter action.
For each sub area a new level of placeholder will be defined inside Use Data Filter, so you can
map variables to fields of that level. For more information, see topic Defining Sub Areas.

o Assignment area. Specifies the location of repeatable data containing the name : value
pairs. The field names and their values are read simultaneously. The mapping to variables is
done automatically. Use this feature to accommodate filter to changeable input data, elim-
inating the maintenance time. The assignment area can be defined in the root level of the doc-
ument, or inside the sub area. For more information, see topic Defining Assignment Areas.

11

The Data Preview section simplified the configuration. The result of defined filter rule highlights in
the preview area with every configuration change. You can see what data would be extracted with
each rule.

General
This section defines the general properties of the unstructured data filter.

¢ Name. Specifies the filter name. Use the descriptive name that will identify what the filter
does. You can change it anytime.

Description. Provides a possibility to describe the functionality of this filter. You can use it
to write short explanation what the filter does.

Encoding. Specifies the encoding of the data this filter will work with.

Ignore empty lines in data blocks. Specifies not to raise error if filter would extract
empty field values from the data blocks.

Example

The fields can be defined in the root level as document fields. The fields can be defined inside data
block. The name : value pairs can be defined inside assignment area.

Document field
Document field

Data block

Data block field
Data block field

Assignment area

WYariablel = Valuel
Variable? = Value?
Yariable? = Value3

Document field Document field

Defining Fields

When you define a field, you have to define its name and a rule how to extract the field value from
the data. When the filter will execute, the extraction rules apply to the input data and assign result
to the field.

Field Properties
o Name. Specifies the unique name of the field.

¢ Field has binary data. Specifies that the field will contain binary data. Don't enable it
unless you really expect to receive binary data.

12

Defining Field Start

e Position in document. The start/end point is determined by the hard-coded position in
the data. The coordinate origin is upper left corner. The character in the defined position is
included in the extracted data.

¢ End of document. The start/end point is at the end of the document. You can also define
an offset from the end for specified number of lines and/or characters.

o Find string from start of document. The start/end point is defined by position of the
searched-for-string. When the required string is found, the next character determines the
start/end point. The searched string is not included in the extracted data. The default search
is case sensitive.

¢ Start search from absolute position. You can fine-tune searching by changing
the start position from data-start (position 1,1) to an offset. Use this feature to skip
searching at the beginning of data.

e Occurrence. Specifies which occurrence of the search string should be matched. Use
this option if you don't wait to set start/stop position after the first found string.

« Offset from string. Specifies the positive or negative offset after the searched string.
For example, you would define the offset to include the searched-for-string in the
extracted data.

Defining Field End

e Position in document. The start/end point is determined by the hard-coded position in
the data. The coordinate origin is upper left corner. The character in the defined position is
included in the extracted data.

¢ End of document. The start/end point is at the end of the document. You can also define
an offset from the end for specified number of lines and/or characters.

o Find string from start of document. The start/end point is defined by position of the
searched-for-string. When the required string is found, the next character determines the
start/end point. The searched string is not included in the extracted data. The default search
is case sensitive.

¢ Start search from absolute position. You can fine-tune searching by changing
the start position from data-start (position 1,1) to an offset. Use this feature to skip
searching at the beginning of data.

e Occurrence. Specifies which occurrence of the search string should be matched. Use
this option if you don't wait to set start/stop position after the first found string.

o Offset from string. Specifies the positive or negative offset after the searched string.
For example, you would define the offset to include the searched-for-string in the
extracted data.

o Find string after field start. The start/stop end point is defined by position of the
searched-for-string as in the option Find string from start of document, but the search
starts after the start position of the field/area, not at the beginning of the data.

o Length. Specifies the length of the data in lines in characters. The specified number of lines
and/or characters will be extracted from the start position.

o End of line. Specifies to extract the data from the start position until the end of the same
line. You can define a negative offset from end of the line.

Format Text

This section defines the string manipulation functions that will be applied to the selected variables

13

or fields. You can select one or several functions. The functions will be applied in the order as
selected in the user interface, from top to bottom.

¢ Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

« Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

« Delete opening closing characters. Deletes the first occurrence of the selected opening
and closing characters that are found in the string.

Example: if you use "{" for opening character and "}" for the closing character, the input
string { {selection}} will be converted to {selection}.

e Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

There are several implementations of the regular expressions in use. NiceLabel Auto-
mation uses the .NET Framework syntax for the regular expressions. For more infor-
mation, see Knowledge Base article KB250.

¢ Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are char-
acters with decimal ASCII values between 0-31 and 127-159.

o Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-159.

e Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

¢ Search and delete everything after. Finds the provided string and deletes all characters
from the string until the end of the data. The found string itself can also be deleted.

Defining Sub Areas

Sub area is the section of data within which there are several blocks of data identified by the same
extraction rule. Each data block provides the data for a single label. Each data block can contain
another sub area. You can define unlimited number of nested sub areas within parent sub areas.

When the filter contains definition of a sub area, the Use Data Filter action will display sub areas
with nested placeholders. All action nested below such placeholder will execute only for data blocks
on this level. You can print different labels with data from different sub areas.

Configuring Sub Area

The sub area is defined with similar rules as individual fields. Each sub are is defined by the fol-
lowing parameters.

o Sub area start. Specifies the start position of the sub area. Usually that's the beginning of
the received data. The configuration parameters are the same as for defining fields. For more
information, see topic Defining Fields.

e Sub area end. Specifies the end position of the sub area. Usually that's the end of the
received data. The configuration parameters are the same as for defining fields. For more
information, see topic Defining Fields.

14

http://kb.nicelabel.com/index.php?t=faq&id=250

o Identification of data blocks within data area. Specifies how to identify the data
blocks within the sub area. Each sub area contains at least one data block. Each data block
provides data for a single label.

o Each block contains fixed number of lines. Specifies that each data block in a
sub area contains the provided fixed number of lines. Use this option if you know that
each data block contains exactly the same number of lines.

o Blocks start with a string. Specifies that data blocks begin with the provided
string. All contents between two provided string belongs to a separate data block. The
content between last string and the end of the data identifies the last data block.

e Block end with a string. Specifies that data blocks end with the provided string.
All contents between two provided strings belongs to a separate data block. The con-
tent between the beginning of data and the first string identifies the first data block.

« Blocks are separated by a string. Specifies that data blocks are separated with
the provided string. All contents between two provided strings belongs to separate
data block.

Configuring Fields Inside Sub Area

The fields inside the sub area are configured using the same parameters as for the fields defined in
the root level. For more information, see topic Defining Fields.

The field lines numbers refer to the position within data block, not position within the input
data.

Data Preview

This section provides the preview of the field definition. When the defined item is selected, the pre-
view will highlight its placement in the preview data.

e Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the pre-
view file name, the new file name will be saved.

e Open. Selects some other file upon which you want to execute the filter rules.

¢ Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

Defining Assignment Areas

Unstructured Data filter has ability to automatically identify the fields and their values in the data,
eliminating the need of manual variable to field mapping.

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has
changed; there might be new fields, or some old fields are no longer available. The filter will auto-
matically identify structure. At the same time the field names and values (name : value pairs) will
be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be done
dynamically. You even don't have to define label variables into trigger configuration. The action will
assign field values to the label variables of the same name without requiring the variables imported
from the label. However, this rule applies to Print Label action alone. If you want to use the field
values in any other action, you will have to define variables in the trigger, while still keeping the
automatic variable to field mapping.

15

No error will be raised if the field available in the input data doesn't have a matching label var-
iable. The missing variables are silently ignored.

Configuring Assignment Area

The assignment area is configured using the same procedure as sub area. For more information, see
topic Defining Sub Areas. The assignment area can be defined on the root data level, appearing just
once. Or it can be configured inside a sub are, so it will execute for each data block in the sub area.

Configuring Fields in Assignment Area

When you create the assignment area, the filter will automatically define two placeholders, which
will define the name : value pair.

e Variable name. Specifies the field, which contents will be the variable name (name com-
ponent in a pair). Configure the field using the same procedure as for document fields. For
more information, see topic Defining Fields.

e Variable value. Specifies the field, which contents will be the variable value (value com-
ponent in a pair). Configure the field using the same procedure as for document fields. For
more information, see topic Defining Fields.

Example

The area between *XA and "XZ is assignment area. Every line in assignment are provides the
name :value pair. Name is defined as value between 6th character in the line and equal character.
Value is defined as value between equal character and end of the line with negative offset of three
characters

A XA

AFDO1DonationHR=G095605 3412625"FS
AFD02DonationBC=DG0956053412625"FS
AFDO3HospitalNOoHR=HNO060241"FS
~FD0O4HospitalNoBC=060241"FS
AFDO5Surname=Hawley~FS
AFDO7Forename=Annie”FS
AFDO9Product=Blood”"FS
AFD10PatientBIGp=0O0 Rh +ve~FS
AFD11DoB=27 June 1947"FS
AFD12DateReqd=25 Dec 2012/FS

NXZ

For more information, see topic Examples.
Configuring XML Filter

XML Filter

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever trigger receives the XML-encoded data. The filter allows you to extract
individual fields, fields in the repeatable sub areas, and even name : value pairs. The XML struc-
ture defines elements and sub elements, attributes and their values, and text values (element
values).

While you can define the structure of the XML file yourself, it's best practice to import the structure
from the existing sample XML file. Click Import Data Structure button in the ribbon. When you

-16 -

import XML structure, the Data Preview section will display the XML contents and then highlight
the elements and attributes that you define as output fields.

To use the XML items you must configure them as:

e Variable value. Specifies that you want to use the selected item as field and you will map
its value to respective variables in the Use Data Filter action. For more information, see topic
Defining XML Fields.

« Data block. Specifies that the selected element occurs many times and will provide data for
single label. The data block can be defines as repeatable area, as assigment area, or both.

o Repeatable area. Specified that you want to extract values from all repeatable data
block, not just the first one. You can define fields within each data block. You must
map the defined fields to respective variables in the Use Data Filter action. For more
information, see topic Defining Repeatable Elements.

« Assignment area. Specifies that data block contains name : value pairs. The field
names and their values are read simultaneously. The mapping to variables is done
automatically. Use this feature to accommodate filter to changeable input data, elim-
inating the maintenance time. For more information, see topic Defining
XML Assignment Area.

The Data Preview section simplified the configuration. The result of defined filter rule highlights in
the preview area with every configuration change. You can see what data would be extracted with
each rule.

Defining XML Fields

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

When you define the XML field, you make the value of selected item available as field. The filter def-
inition will provide such field for mapping to variable in Use Data Filter action. You can extract the
value of the element or value of the attribute.

To define the item value as field, do the following:
1. Select the element or attribute in the structure list.
2. For Usage select Variable value.
3. The item in the structure list will be displayed with bold letters, indicating it is in use.
4. The element or attribute name will be used as the output field name.
5. The Data Preview section will highlight value of the selected item.
Data Preview

This section provides the preview of the field definition. When the defined item is selected, the pre-
view will highlight its placement in the preview data.

e Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the pre-
view file name, the new file name will be saved.

e Open. Selects some other file upon which you want to execute the filter rules.

¢ Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

17

Defining Repeatable Elements

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

When you have a XML element that occurs many times in the XML data, that element is repeat-
able. Usually, the repeatable element contains the data for a single label. To indicate that you want
to use data from all repeatable elements, not just the first one, you have to define the element as
Data block and enable the option Repeatable element. When the filter contains definition of
elements defined as data block / repeatable element, the Use Data Filter action will display repeat-
able elements with nested placeholders. All action nested below such placeholder will execute only
for data blocks on this level.

Example

The <item> element is defined as Data block and Repetable element. This instructs the filter
to extract all occurrences of the <item> element, not just the first one. In this case the <item>
would be defined as the sub-level in Use Data Filter action. You must nest the actions Open
Label and Print Label under this sub-level placeholder, so they will be looped as many times as
there are occurrences of the <item> element. In this case three times.

<?xml version="1.0" encoding="utf-8"?>
<asx:abap xmlIns:asx="http://www.sap.com/abapxml" version="1.0">
<asx:values>
<NICELABEL_JOB>
<TIMESTAMP>20130221100527.788134</TIMESTAMP>
<USER>PGRI</USER>
<IT_LABEL_DATA>

<item>
<LBL_NAME>goods_receipt.lbl</LBL_NAME>
<LBL_PRINTER>Production01</LBL_PRINTER>
<LBL_QUANTITY>1</LBL_QUANTITY >
<MAKTX>MASS ONE</MAKTX>
<MATNR>28345</MATNR>
<MEINS>KG</MEINS>
<WDATU>19.01.2012</WDATU>
<QUANTITY>1</QUANTITY >
<EXIDV>012345678901234560</EXIDV>

</item>

<item>
<LBL_NAME>goods_receipt.lbl</LBL_NAME>
<LBL_PRINTER>Production01</LBL_PRINTER>
<LBL_QUANTITY>1</LBL_QUANTITY >
<MAKTX>MASS TWO</MAKTX>
<MATNR>28346</MATNR>
<MEINS>KG</MEINS>
<WDATU>11.01.2011</WDATU>
<QUANTITY>1</QUANTITY >
<EXIDV>012345678901234577</EXIDV>

</item>

<item>
<LBL_NAME>goods_receipt.lbl</LBL_NAME>
<LBL_PRINTER>Production01</LBL_PRINTER>
<LBL_QUANTITY>1</LBL_QUANTITY >
<MAKTX>MASS THREE</MAKTX>
<MATNR>27844</MATNR>
<MEINS>KG</MEINS>
<WDATU>07.03.2009</WDATU>
<QUANTITY>1</QUANTITY >
<EXIDV>012345678901234584</EXIDV>

-18 -

</item>

</IT_LABEL_DATA>
</NICELABEL_JOB>
</asx:values>
</asx:abap>

Defining XML Assignment Area

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

XML filter has ability to automatically identify the fields and their values in the data, eliminating
the need of manual variable to field mapping.

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has

changed; there might be new fields, or some old fields are no longer available. The filter will auto-
matically identify structure. At the same time the field names and values (name : value pairs) will
be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be done
dynamically. You even don't have to define label variables into trigger configuration. The action will
assign field values to the label variables of the same name without requiring the variables imported
from the label. However, this rule applies to Print Label action alone. If you want to use the field
values in any other action, you will have to define variables in the trigger, while still keeping the
automatic variable to field mapping.

No error will be raised if the field available in the input data doesn't have a matching label var-
iable. The missing variables are silently ignored.

Configuring XML Assignment Area

When you configure the Data Block as assignment area, two placeholders appear under this ele-
ment's definition. You have to define how the field name and value are defines, so the filter can
extract the name : value pair.

e Variable name. Specifies the item that contains the field name. The name can be defined
by element name, selected attribute value, or element value. The label variable must have the
same name in order for automatic mapping to work.

e Variable value. Specifies the item that contains the field value. The name can be defined
by element name, selected attribute value, or element value.

Example

The <1abel> element is defined as data block and assignment area. The variable name is
defined by value of the attribute name, the variable value is defined by element text.

<?xml version="1.0" standalone="no"?>
<labels _FORMAT="case.lbl" _PRINTERNAME="Production01" _QUANTITY="1">
<label>
<variable name="CASEID">0000000123</variable>
<variable name="CARTONTYPE"/>
<variable name="ORDERKEY">0000000534</variable>
<variable name="BUYERPO"/>
<variable name="ROUTE"> </variable>
<variable name="CONTAINERDETAILID">0000004212</variable>
<variable name="SERIALREFERENCE">0</variable>
<variable name="FILTERVALUE">0</variable>

19

<variable name="INDICATORDIGIT">0</variable>
<variable name="DATE">11/19/2012 10:59:03</variable>
</label>
</labels>

For more information, see topic Examples.

Setting Label And Printer Names From Input Data

Typically, filters are used to extract values from received and values are later sent to the abel var-
iables. In this name the label name or printer name are hard-coded into the actions. For example,
Open Label action will hard-code the label name, and Set Printer action will hard-code the printer
name. However, the input data can also provide the meta-data, values used inside NiceLabel Auto-
mation processing, but not printed on the label, such as label name, printer name, label quantity,
or anything else.

To use the values of meta-fields in the print process, do the following.

1. Filter reconfiguration. You must define new fields for the input data to extract the meta-
data fields as well.

2. Variable definition. You must manually define the variables that will store the meta-data,
they don't exist on the label and cannot be imported. Use intuitive names, such as Label-
Name, PrinterName, and Quantity. You are free to use any variable name.

3. Mapping reconfiguration. You must manually configure the Use Data Filter action to
map meta-fields to new variables.

4. Action reconfiguration. You must reconfigure Open Label action to open label specified
by variable Labe1Name, and Set Printer action to use printer specified by variable Prin-
terName.

Example

The CSV file contains label data, but also provides meta-data, such as label name, printer name
and quantity of labels. The Structured Text filter will extract all fields, send label-related values to
the label variables and use meta-data to configure action Open Label, Set Printer and Print Label.

label_name;label_count;printer_name;art_code;art_name;eanl3;weight
labell.lbl;1;CAB A3 203DPI;00265012;SAC.PESTO 250G;383860026501;1,1 kg
label2.1bl;1;Zebra R-402;00126502; TAGLIOLINI 250G;383860026002;3,0 kg

For more information, see topic Examples.

20

Configuring Trig_gers

Triggers

The functionality from this topic is not all available in every NiceLabel Automation product.

The NiceLabel Automation must get the signal in order to execute defined activities, such as label
printing. NiceLabel Automation is an event-based application and will trigger action execution
upon change in the monitored event. You can use any of the available triggers to monitor changes
in events, such as file drop into a certain folder, data acquire on specific TCP/IP socket, HTTP mes-
sage and other. The trigger's main job is to recognize the change in the event, get data caused by
the event and execute actions. Majority of the triggers are designed to passively listen for the mon-
itored event to occur, but there are two exceptions. The Database trigger is active trigger and will
periodically check for changes in the monitored database. The Serial port trigger can wait for
incoming connection, or can actively poll for data in specified time intervals.

Processing Triggers

In most cases the trigger receives data that must print on labels. Once the trigger receives the data,
it executes actions in defined order from top to bottom. The received data contains values for label
objects. Before you can use the values, they must be extracted from the received data. The filters
define the extraction rules and when executed, filters will save the extracted data to mapped var-
iables. Once you have the data safely stored to variables, you can run other action, such as Print
Label. The event can occur without any data even being exchanged with the NiceLabel Automation
for some triggers, such as file trigger, where the monitored file can change the timestamp, but it has
no contents. In this case the event is used as signal to execute actions that don't require any input
from the trigger.

Trigger Properties

To configure trigger, you have to define how you will accept the data and the actions you want to
run. Optionally you can also use variables. There are three sections in trigger configuration.

o Settings. Defines the main parameters of the selected trigger. You can define the event that
trigger will monitor for changes, or define the inbound communication channel. The settings
include selection of the script engine and security options. The available options depend on
the trigger type. For more information, see section Trigger Types.

e Variables. This section defines the variables you need inside the trigger. Usually, you will
import variables from the label templates, so you can map them with the fields extracted
from the inbound data. You can also define variables to be used internally in various actions
and won't be sent to the label. For more information, see topic Using Variables.

e Actions. This section defines the actions to execute whenever the trigger detects change in
the monitored event. Actions execute in order from top to bottom. For more information, see

topic Using Actions.

Error Handling in Triggers

o Configuration errors. The trigger will be in the error state, whenever it's not configured
properly or entirely. For example, the you have configured the file trigger, but failed to spec-
ify the file name to check for changes. Or, you defined the action to print labels, but you
failed to specify the label name. You can save triggers that contain configuration errors, but
you cannot run them in Automation Manager until you resolve the problem. The error in the
lower level in the configuration will propagate itself all the way to the higher level, so it is
easy to find the error location. For example, if you have one action in error state, all upper-
level actions will indicate the error situation, the error icon will be displayed in the Actions
tab and in the trigger name.

21

¢ Overlapping configurations. While it is perfectly acceptable for the configuration to
include triggers monitoring the same event, such as the same file name, or listening on the
same TCP/IP port, such triggers cannot run simultaneously. When you start the trigger in
Automation Manager, it will start only if no other trigger from the same or other con-
figuration monitors the same event.

Trigger Types

o Defining Triggers. Monitors the change in the file or set of files in the folder. Contents of
the file can be parsed in filters and used in actions.

e Serial Port Trigger. Monitors the inbound communication on the serial RS232 port. Con-
tents of the input stream can be parsed in filters and used in actions. The data can be also
polled from the external device in defined time intervals.

o Database Trigger. Monitors the record changes in the SQL database tables. Contents of
the returned dataset can be parsed and used in actions. The database is monitored in defined
time intervals. The trigger can also update the database after the actions execute using
INSERT, UPDATE and INSERT SQL statements.

e TCP/IP Server Trigger. Monitors the inbound raw data stream arriving on the defined
socket. Contents of the input stream can be parsed in filters and used in actions. Can be
bidirectional, providing feedback.

e HTTP Server Trigger. Monitors the inbound HTTP-formatted data stream arriving on the
defined socket. Contents of the input stream can be parsed in filters and used in actions.
User authentication can be enabled.

e Web Service Trigger. Monitors the inbound data stream arriving on the defined Web Serv-
ice method. Contents of the input stream can be parsed in filters and used in actions. Is bidir-
ectional, providing feedback.

Defining Triggers

File Trigger
To learn more about triggers in general, see topic Triggers.

The file trigger event occurs when a monitored file or set of files in monitored folder change. Appear-
ance of new file or changed existing file will fire trigger.

Typical usage: The existing business system executes a transaction, which in effect generates
trigger file in the shared folder. The contents of the data might be structured in CSV, XML and
other formats, or it can be structured in a legacy format. In either way, NiceLabel Automation
will read the data, parse values using filters and print them on labels.

General Settings
This section allows you to configure the most important file trigger settings.

o Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

e Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

« Detect the specified file. Specifies the path and file name of the file that you will monitor
for changes.

22

o Detect a set of files in the specified folder. Specifies the path to the folder, which you
will monitor for file changes, and the file names. You can use standard Windows wildcards
"#"and "?". Some file types are pre-defined in the drop-down box, you can also enter your
own types.

When monitoring the network folder, make sure to use the UNC notation of
\\server\share\file. For more information, see topic Access to Network Shared
Resources.

« Automatically detect changes. The application will respond to the file changes as soon
as the file has been created. You can use it when the monitored folder is located on the local
drive.

¢ Check for changes in folder in intervals (milliseconds). The application will scan
the folder for file changes in the defined time intervals. This polling method tends to be
slower than automatic detection, but you have to use for monitoring network folders.

Execution
The options in the File Access section specify how the application will access the trigger file.

o Open file exclusively. Specifies to open the trigger file in exclusive mode. No other appli-
cation can access the file at the same time. This is default selection.

e Open file with read only permissions. Specifies to open the trigger file in read-only
mode.

e Open file with read and write permissions. Specifies to open the trigger file in read-
write mode.

o File open retry period. Specifies the time period in which NiceLabel Automation will try
to open the trigger file. If the file access is still not possible after this time period, NiceLabel
Automation will report an error.

The options in the Monitoring Options section specify the file detection possibilities.

o Check file size. Enables detection of changes not only in the timestamp, but also in the
file length. The changes to the file timestamp might not be detected, so it will help to see
that the file size has changed and trigger the actions

o Ignore empty trigger files. If the trigger file has no contents, it will be ignored. The
actions will not execute.

o Delete the trigger file. After the change in the trigger file has been detected, and trigger
fires the file will be deleted. Enabling this option will keep the folder clean of already proc-
essed files.

NiceLabel Automation always creates a backup of the received trigger data; in this case
the contents of trigger file and saves it to unique filename. This is important, when you
need the contents of the trigger file in some of the actions, such as Run Command File.
The location of the backup trigger data is referenced to by the internal variable Data-
FileName.

« Empty file contents. When actions execute, the trigger file is emptied. This is useful when
the 3rd party applications appends data into the trigger file. You want to keep the file so the
append can be done, but you don't want to print old data.

o Track changes while trigger is inactive. Specifies if you want to fire trigger upon the
files that changed while the trigger was not started. When your NiceLabel Automationis not

23

deployed in the high-availability environment with backup servers the incoming trigger files
might be lost, when the server is down. When the NiceLabel Automation is back online, the
existent trigger files can be processed.

Other

e Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

o Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security

e Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is
locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.

Serial Port Trigger
To learn more about triggers in general, see topic Triggers.

The serial port trigger event occurs when data is received on the monitored RS232 serial port.

Typical usage: (1) Printer replacement. You will retire the existing serial port-connected
label printer. In its place NiceLabel Automation will accept the data , extract the values for
label objects from the received print stream, and create a print job for the new printer model.
(2) Weight scales. The weight scale provides the data about the weighted object. NiceLabel
Automation extracts the required data from the received data stream, and prints a label.

General Settings
This section allows you to configure the most important file trigger settings.

o Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

o Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

o Port. Specifies the serial port (COM) number where incoming data will be accepted on. Use
the port that is not in use by some other application, or device, such as printer driver. If the
selected port is in use, you won't be able to start the trigger in Automation Manager.

The options in the Port Settings section specify the communication parameters that must match
the parameters assigned on the serial port device.

o Disable port initialization. Specifies that the port initialization will not be executed when
you start the trigger in Automation Manager. This option is sometimes required for virtual
COM ports.

Execution

o Use initialization data. Specifies that you want to send the initialization string to the
serial device each time the trigger is started. Some serial devices require to be awaken or put
into standby mode before they can provide the data. For more information about the initial-
ization string and if you need it at all, see your device's user guide. You can include binary

24

characters. For more information, see topic Entering Special Characters.

o Use data polling. Specifies that the trigger will actively ask the device for data. In the spec-
ified time intervals the trigger will send the commands provided in the Contents field. can
include binary characters. For more information, see topic Entering Special Characters.

Other

e Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

o Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security

e Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is
locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.

Database Trigger

To learn more about triggers in general, see topic Triggers.

The database trigger event occurs when a change in the monitored database table is detected. There
might be new records, or existing records have been updated. Database trigger doesn't wait for the
for any event change, such as data delivery. Instead, it pulls the data from the database in the
defined time intervals.

Typical usage: The existing business system executes a transaction, which in effect updates
data in some database table. NiceLabel Automation will detect the updated and new records,
and print their contents on the labels.

General Settings
This section allows you to configure the most important file trigger settings.

e Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

o Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

« Database connection. Specifies the connection string to the database. Click on the Define
button opens a Database dialog box, where you can configure a connection to the database,
including database type, table name, and user credentials. You have to connect to the SQL-
enabled database. That rules out CSV files (comma separated files) and Microsoft Excel
spreadsheets.

The configuration details depend on the type of selected database. The options in the
dialog box depend on the database driver that you use. For more information, see user
guide for your database.

e Check database in the time intervals. Specifies the time interval in which the database
will be polled for the records.

25

The options for Detection Options and Advanced allow you to fine-tune the record detection
mechanism. When the records are acquired from the database, the Action tab will automatically dis-
play the object For Each Record, where you can map the table fields to label variables.

¢ Get records based on unique incremental field value. In this case the trigger will
monitor specified auto-incremental numeric field in the table. NiceLabel Automation will
remember the field's value for the last processed record. At the next polling interval only the
records with values greater than the remembered value will be acquired. To configure this
option, you have to select the table name where the records reside (table name), select the
auto-incremental field (key field) and the starting value for the field (key field
default value). Internally, the variable KeyField is used to reference to the current
value of key field.

It's a good practice to monitor the auto-incremental field in the database table so you will
capture all new records.

e Get records and delete them. In this case all records are acquired from the table and
then deleted from the table. To configure this option, you have to select the table name where
the records reside (table name).

¢ Get records and update them. In this case all records are acquired from the table and
then updated. You can write a custom value into one field in the table as indication 'this rec-
ords has been already printed'. To configure this option, you have to select the table name,
where the records reside (table name), select the field that you want to update (update
field), and enter the value that will be stored in the field (update value). Internally,
the variable UpdateVvalue is used to reference the current value of Update value field.

¢ Get and manage records with custom SQL. In this case the record extraction and field
updates are entirely up to you. To configure this option, you have to provide a custom
SQL statement to acquire records (search SQL statement) and custom SQL statement
to update the records after processing (update SQL statement). Click the Test button to
test-execute your SQL statements and see the result on-screen. You can also use the internal
variables KeyField and UpdateValue as in the previous two options. You have to put
colon (:) in front of the variable name in your SQL statement to identify it as variable.

Show SQL statement. Expand this section to see the generated SQL statement and write your
own statement, if you have selected the option Get and manage records with custom SQL.

Previewing SQL Execution

When you extract and modify records using the Get and manage records with custom SQL,
you can test-execute the SQL sentences to see what the effect would be. To open the Data Preview
section for testing the SQL statement, click the Load button in the toolbar of SQL edit area. When
you use variables in the SQL statement to filter the records, you have to put a colon character (:) in
front of the variable. NiceLabel Automation will use the variable value. Enclose the variable in
square brackets. When testing the SQL statement, enter the values of variables on-screen.

SELECT * FROM Table
WHERE ProductID = :[ID]

If you have Data Preview opened and have just added some variables in the script, click Test
button twice (to close and open Data Preview section) to update the list of variables in the pre-
view.

« Simulate execution. Specifies that all changes made to the database are ignored. The data-
base transaction is reverted so no updates are written to the database.

Execution

- 26 -

The options in Execution specify when the database updating will take place. The update type
depends on the Detection Options for the trigger.

¢ Before processing actions. Specifies that records will be updated before the actions
defined for this trigger have started to execute.

« After processing actions. Specifies that records will be updated after the actions defined
for this trigger have been executed.

Record will be updated in either case, (1) there was error executing the actions and (2) there was
no error executing the actions. If you want to update records only after the data provided by the
record has been successful used in the action (such as Print Label action), then manually update
the them. For more information, see topic Execute SQL Statement.

Other

¢ Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

o Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security
¢ Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is
locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.
TCPI/IP Server Trigger

To learn more about triggers in general, see topic Triggers.

The TCP/IP trigger event occurs when data is received on the monitored socket (IP address and
port number).

Typical usage: The existing business system executes a transaction, which in effect sends the
data to NiceLabel Automation server on a specific socket. The contents of the data might be
structured in CSV, XML and other formats, or it can be structured in a legacy format. In either
way, NiceLabel Automation will read the data, parse values using filters and print them on
labels. Data is parsed on-the-fly, it doesn't have to be saved to disk.

General Settings
This section allows you to configure the most important file trigger settings.

o Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

e Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

¢ Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you won't
be able to start the trigger in Automation Manager.

27

If your server has multi-homing enabled (more IP addresses on one or more network
cards), NiceLabel Automation will respond on defined port on all IP addresses.

¢ Maximum number of concurrent connections. Specifies the maximum number of
accepted connections. That many concurrent clients can send data to the trigger.

The options in the Execution Event section specify when the trigger should fire and start execut-
ing actions.

e On client disconnect. Specifies that trigger will fire after the client sends data and closes
the connection. This is a default setting.

If you want to send the print job status back to the 3rd party application as a feedback,
don't use this option. If the connection is left open, you can send feedback using the
action Send data to TCP/IP port with the parameter Reply to sender.

¢ On number of characters received. Specifies that trigger will fire when the required
number of characters has been received. In this case the 3rd party application can keep a con-
nection open and continuously sends data. Each chunk of data must be of the same size.

e« On sequence of characters received. Specifies that the trigger will fire every time when
the required sequence of characters has been received. You would use this option if you know
that the 'end of data' is always identified by a unique set of characters. You can insert special
(binary) characters using the button next to the edit field.

e When nothing is received after the specified time interval. Specifies that the
trigger will fire after a required time interval passes since the last character has been received.

Execution

o Allow connections from the following hosts. Specifies the list of IP addresses or host
names of the computers that are allowed to connect to the trigger. Put each entry in a new
line.

e Deny connections from the following hosts. Specifies the list of IP addresses or host
names of the computers that are not allowed to connect to the trigger. Put each entry in a
new line.

¢ Welcome message. Specifies the text message that is returned to the client each time it
connects to the TCP/IP trigger.

e Answer message. Specifies the text message that is returned to the client each time the
actions execute. Use this option when the client doesn't disconnect upon data send and
expects the answer when action execution has ended. The answer message is hard-coded and
thus always the same.

e Message encoding. Specifies the data encoding scheme, so the special characters can be
correctly processed. NiceLabel Automation can automatically detect the data encoding, based
on BOM header (text files), or encoding attribute (XML files).

Other

e Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

¢ Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security

e Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

- 28 -

locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.

HTTP Server Trigger

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

To learn more about triggers in general, see topic Triggers.

The HTTP trigger event occurs when data is received on the monitored socket (IP address and port
number). Contrary to TCP/IP trigger the received data is not in a raw data stream, but must
include the standard HTTP header. The 3rd party application must use the POST request method
and provide the data in message body.

Typical usage: The existing business system executes a transaction, which in effect sends the
data to NiceLabel Automation server formatted as HTTP POST message on a specific socket.
The contents of the data might be structured in CSV, XML and other formats, or it can be struc-
tured in a legacy format. In either way, NiceLabel Automation will read the data, parse values
using filters and print them on labels. Data is parsed on-the-fly, it doesn't have to be saved to
disk.

General Settings
This section allows you to configure the most important file trigger settings.

e Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

o Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

e Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you won't
be able to start the trigger in Automation Manager.

If your server has multi-homing enabled (more IP addresses on one or more network
cards), NiceLabel Automation will respond on defined port on all IP addresses.

o Wait for trigger execution to finish. The HTTP protocol requires the receiver (in this
case NiceLabel Automation) to send a numeric response back to the sender indicating the
status of the received message. By default, NiceLabel Automation will response with code
200, indicating that data was successfully received. However, you can use the
HTTP response codes to indicate the status of the print job. This option specifies that trigger
doesn't send the response immediately after data is received, but waits until all actions have
been executed. If you want to send feedback about print process, make sure to enable syn-
chronous print mode. For more information, see topic Synchronous Print Mode.

The available response codes are:

Response Code Description

200 All actions executed successfully.

401 Unauthorized, wrong username and password were specified.
500 There were errors during action execution.

29

e Maximum number of concurrent requests. Specifies the maximum number of
accepted connections. That many concurrent clients can send data to the trigger.

¢ Enable authentication. Specifies that incoming messages include the username and pass-
word. Only messages with matching credentials will be accepted.

Other

e Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

o Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security

e Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is
locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.

Web Service Trigger

The functionality from this topic is available in NiceLabel Automation Enterprise.

To learn more about triggers in general, see topic Triggers.

The Web Service trigger event occurs when data is received on the monitored socket (IP address and
port number). The data must follow the SOAP notation (XML data encoded into HTTP message).
The Web Service interface is described in the WSDL document available with each defined Web Serv-
ice trigger. The Web Service can provide a feedback about print job status, but you have to enable
the synchronous processing mode. For more information, see the topic Print Job Status Feedback.

Typical usage: The existing business system executes a transaction, which in effect sends the
data to NiceLabel Automation server on a specific socket formatted as SOAP message. The con-
tents of the data might be structured in CSV, XML and other formats, or it can be structured in
a legacy format. In either way, NiceLabel Automation will read the data, parse values using
filters and print them on labels. Data is parsed on-the-fly, it doesn't have to be saved to disk.
Typically, Web Service would be used by programmers to integrate label printing in their own
applications.

General Settings
This section allows you to configure the most important file trigger settings.

e Name. Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder and later run them in
Automation Manager.

o Description. Provides a possibility to describe the functionality of this trigger. You can use
it to write short explanation what the trigger does.

o Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you won't
be able to start the trigger in Automation Manager.

If your server has multi-homing enabled (more IP addresses on one or more network
cards), NiceLabel Automation will respond on defined port on all IP addresses.

30

e Maximum number of concurrent calls. Specifies the maximum number of accepted
connections. That many concurrent clients can send data to the trigger.

e WSDL style. Specifies the style of the SOAP messages. It can be either Remote Procedure
Call (RPC) or a document style. Choose the style that is supported in your application pro-
viding data to NiceLabel Automation.

Other

e Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the 3rd party application. For more information, see
topic Synchronous Print Mode.

¢ Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Security

e Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is
locked and cannot be edit, and actions become encrypted. Only the user with a password can
unlock the trigger and modify it.

WSDL Document

If you define Web Service trigger on port 12345 and start the trigger in Automation Manager, its
WSDL will be available at:

http://localhost:12345

The Web Service interface defines one function as defined in the WSDL document. The main part of
the definition is the following:

<wsdl:message name="WebSrviTrg ExecuteTrigger InputMessage">
<wsdl:part name="text" type="xsd:string"/>

<wsdl:part name="wait" type="xsd:boolean"/>

</wsdl:message>

<wsdl:message name="WebSrviTrg ExecuteTrigger OutputMessage"
<wsdl:part name="ExecuteTriggerResult" type="xsd:int"/
<wsdl:part name="errorText" type="xsd:string"/>
</wsdl:message>

There are two input variables (you provide their values):

o text. This is the provided string data, which can be structured as CSV, XML and other for-
mats, or it can be structured in a legacy format.

o wait. This is boolean field that specifies if you will wait for the print job status response and
if Web Service should provide feedback.

There are two optional output variables (you receive their values, if you requested them):

o ExecuteTriggerResult. The integer response will contain value o if there was no problems
processing the data, and it will contain an integer greater than 0, when error(s) did occur.
The application executing the Web Service call to NiceLabel Automation can use the response
as error indicator.

¢ ErrorText. This string value will contain the print job status response. If there was no error
processing the print job, the value is empty string. If there was an error, the value contains
the descriptive error message.

31

Using Variables

Variables

Variables are used as containers for data values. You need variables to transfer values to the label in
Print Label action, or to use values in other data-manipulation actions. Typically, the filter will
extract values from the data streams received by trigger and will values into variables. For more
information, see topic Understanding Filters.

Usually, you want to send the values of variables to the label template and print label. The mech-
anism to send variables values to labels works using following automatic mapping way - trigger var-
iable will be sent to the label variable of the same name. You can define variables in one of three
ways:

o Import variables from label file. For the above explained automatic mapping it makes
a good practice to import your variables from the label each time. This action ensures that
variable names match and saves time. The imported variable doesn't inherit just the variable
name, but also supported variable properties, such as length and default value.

e Manually define variables. When manually defining variables, you have to be extra care-
ful to use the same names as variables in the label. You would manually define the variables
that don't exist in the label, but you need them inside the trigger.

An example would be variables, such as LabelName, PrinterName, Quantity and sim-
ilar variables that you need to remember the label name, printer name, quantity or other
meta-values assigned by the filter.

« Enabling internal variables. Values for internal variables are assigned by NiceLabel Auto-
mation and are available as read-only values. For more information, see topic Internal Var-
iables.

Properties

o Name. Specifies the unique variable name. Names are not case sensitive. Although you can
use spaces in variable names, it's a better practice not to. Even more so if you use variables
in scripts or in conditions on actions, because you will have to enclose them in square brack-
ets.

o Allowed characters. Specifies the list of characters the value can occupy. You can select
between All (all characters are accepted), Numeric (only digits are accepted), and Binary (all
characters and control codes are accepted).

e Limit variable length. Specifies the maximum number of characters the variable can
occupy.

o Fixed length. Specifies that the value must occupy exactly as many characters as defined
by its length.

You must limit variable length for certain objects on the label, such as bar code EAN-13,
which accepts 13 digits.

e Value required. Specifies that the variable must contain a value.

o Default value. Specifies a default value. If the variable is not assigned with any value, then
default value will be always used.

32

Using Compound Values

Some objects in trigger configuration accept compound values. The contents can be a mixture of
fixed values, variables and special characters (control codes). The objects accepting compound
values are identified by a small arrow button to the right side of the object. You can click the arrow
button to insert either variable or special character.s1

You can enter the fixed value for the variable.
This is fixed value.

You can also define the compound value, combined out of values of variables and fixed values. The
variable names must be enclosed in square brackets []. You can enter variables manually, or insert
them. At processing time, the values of variables will be merged together and used as a result.

[variablel] // This is fixed value [variable2][variable3]

You can also add special characters to the mix. You can enter the special characters manually, or
insert them. For more information, see topic Entering Special Characters.

Form feed will follow this fixed text <FF>

Internal Variables

Internal variables are predefined by NiceLabel Automation. Their values are assigned automatically
and are available in ready-only mode. The icon with lock symbol in front of the variable name dis-
tinguish internal variables from user-defined variables. You can use internal variables in your
actions in the same way as you would use user-defined variables. The trigger internal variables are
internal to each trigger.

Internal variable Available Description
in trigger
ActionLastErrorDesc All Provides the description of the error that occurred last. You

can use this value in a feedback to host system, identifying
the cause of the fault.

ActionLastErrorID All Provides the ID of the error that occurred last. This is
integer value. When value is 0, there was no error. You can
use this value in conditions, evaluating if there was some

error or not.

BytesOfReceived Data TCP/IP Provides the number of bytes received by the trigger.

ComputerName All Provides the name of the computer where the configuration
runs.

ConfigurationFileName All Provides the path and file name of the current con-
figuration (.MISX file).

ConfigurationFilePath All Provides the path of the current configuration file. Also see
description for ConfigurationFileName.

DataFileName All Provides the path and file name of the working copy of

received data. Each time the trigger accepts the data, it
makes a backup copy of it to the unique file name identified

by this variable.

Database Database Provides the database type as configured in the trigger.

Date All Provides the current date in the format as specified by sys-
tem locale, such as 26.2.2013.

DateDay All Provides the current number of the day in a month, such as
26.

33

DateMonth

DateYear
DefaultPrinterName

DriverType
NumberOfRowsReturned
Hostname

LocalIP

PathDataFileName
PathTriggerFileName

Port

RemoteHTTPIP

RemotelP
ShortConfigurationFileName
ShortDataFileName
ShortTriggerFileName

SystemUserName
TableName
Time

TimeHour
TimeMinute
TimeSecond
TriggerFileName

TriggerName
Username

All Provides the current number of the month in the year, such
as 2.
All Provides the current number of the year, such as 2013.
All Provides the name of printer driver, which is defined as
default.
Database Provides the name of the driver used to connect to the
selected database.
Database Provides the number of rows that the trigger gets from a
database.

TCP/IP Provides the host name of device/computer connecting to
the trigger.

TCP/IP Provides the local IP address on which the trigger
responded to. This is useful if you have multi-homing
machine with serveral network interface cards (NIC) and
want to determine to which IP address the client connected
to. This is useful for printer replacement scenarios.

All Provides the path in the DataFileName variable, without
the file name. Also see description for DataFileName.

File Provides the path in the TriggerFileName variable, without
the file name. Also see description for TriggerFileName.

TCP/IP, Provides the port number as defined in the trigger.
HTTP,
Web Serv-
ice

HTTP Provides the host name of device/computer connecting to
the trigger.

Web Serv- Provides the host name of device/computer connecting to
ice the trigger.

All Provides the file name of the configuration file, without a
path, Also sSee description for ConfigurationFileName.

All Provides the file name to the DataFileName variable, with-
out the path. Also see description for DataFileName.

File Provides the file name to the TriggerFileName variable,
without the path. Also see description for TriggerFileName.

All Provides the Windows name of the logged-in user.
Database Provides the name of the table as used in the trigger.

All Provides the current time in the format as specified by sys-
tem locale, such as 15:18,

All Provides the current hour value, such as 15.
All Provides the current minute value, such as 18.
All Provides the current second value, such as 25.

File Provides the file name that triggered actions. This is useful
when you monitor set of files in the folder, so you can iden-
tify which file exactly triggered actions.

All Provides the name of the trigger as defined by the user.

Provides the NiceLabel Automation username of the cur-
rently logged in user. The variable has contents only if the
user login is enabled.

34

Global Variables

Global variables are a type of variable that can be used on different labels. Global variables are
defined outside of the label file and remember the last-used value. Global variables are typically
defined as global counters. Global variable will provide a unique value for every label requesting a
new value. File locking takes place ensuring uniqueness of each value.

Global variables are defined in the label designer, the NiceLabel Automation will only use it. If you
have your NiceLabel Automation installed on different computer than NiceLabel designer, you will
have to copy the definition file for global variables to NiceLabel Automation machine, where print
production takes place.

To copy the global variables to the NiceLabel Automation machine, do the following:

1.

On NiceLabel Automation machine, go to the folder $PROGRAMDATAS\EuroP1lus (for older
Windows systems, go to $ALLUSERSPROFILE%\EuroPlus).

Make sure the folder variables exists, so you will have the path as following.

On Windows Vista, Windows 7, Windows Server 2008, Windows Server 2012 and above
c:\ProgramData\EuroPlus\Variables

On Windows XP, Windows Server 2003
c:\Documents and Settings\All Users\EuroPlus\Variables

On the computer with NiceLabel designer, go to the same folder.

Copy the files GLOBAL. TDB and GLOBALS.TDB. SCH from NiceLabel designer machine to
NiceLabel Automation machine.

Using Actions

Actions

The Actions section specifies the list of actions that will execute every time the trigger fires.

¢ Defining actions. To define the action, click the action icon in the Insert Action ribbon

group. The main ribbon contains commonly used actions. To see all available actions, click
All Actions button. To see available commands over the selected action, right-click it and
select command from the list.

Nested actions. Some actions cannot be used on their own. Their specific functionality
requires them to be nested below some other action. Use buttons in Action Order ribbon
group to change action placement. Each action is identified with the ID number that shows
its position in the list, including nesting. This ID number will be displayed in the error mes-
sage so you can find the problematic action easier.

The Print Label action is a good example of such action. You have to position it under
the Open Label action, so it references the exact label to print.

Action execution. The actions in the list will execute just once per trigger. The action
execution if from top to bottom, so order of actions is important. There are two exceptions.
The actions For Loop and Use Data Filter will execute nested actions many times. For
loop as many times as defined in its properties, Use Data Filter as many times as there are
records in a dataset returned from the associated filter.

NiceLabel Automation runs as service under a specified Windows user account and inherits

35

security permissions from the account. For more details, see topic Running in Service Mode.

o Conditional actions. Every action can be conditional. Conditional action only runs when
the provided condition allows it to be run. Condition is one line script (VB Script or Python).
To define condition, click the Show execution and error handling options in action
properties to expand the possibilities.

o Identifying actions that are in configuration error. When the action is not com-
pletely configured, it will be marked with red exclamation icon. Such action cannot execute.
You can include such action in the list, but you will have to complete the configuration,
before you can start the trigger. If one of the nested actions is in error, all parent expansion
arrows (to the left of the action name) will also be colored red as an indicator of sub-action
error.

o Disabling actions. By default, every newly created action is enabled and will execute when
the trigger fires. You can disable the actions that you don't need, but still want to keep the
configuration. A shortcut to action enabling & disabling is a check box in front of the action
name in the list of defined actions.

« Copying actions. You can copy the action and paste it back in the same or some other
trigger. You can use standard Windows keyboard shortuts, or right-click on the action.

« Navigating the action list. You can use your mouse to select the defined action and then
click the respective arrow button in Action Order group in the ribbon. You can also use key-
board. The cursor keys will move selection in the action list, Ctrl + cursors keys will move
the action position up and down, and also left and right for nesting.

Delete File

The functionality from this topic is available in NiceLabel Automation Enterprise.

Deletes file on the disk. NiceLabel Automation runs as service under defined Windows user
account. Make sure that account has permissions to delete file in the specified folder. For more infor-
mation, see topic Access to Network Shared Resources.

File

o File name. Specifies the path and file name. They can be hard-coded, and the same file will
used every time. If you use just file name without the path, the folder where configuration
file (.MISX) is saved will be used. The option Variable enables the variable file name. You
must select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

36

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Execute Script

Enhances the software functionality by using the custom Visual Basic or Python scripts. You can
use this function if the built-in actions don't satisfy your data-manipulation requirements. Nice-
Label Automation runs as service application and as such doesn't have the access to the desktop,
so you cannot use functions, such as as MsgBox () to interact with desktop. Also make sure that
Windows account under which the service runs has the privileges to execute the commands in the
script. For more information, see topic Access to Network Shared Resources.

The script type is configured per trigger in the trigger properties. All Execute Script actions
within one trigger must be of the same type.

Script

Defines the script that will be executed. You can use the on-screen editor, or run the external
Script Editor. The external editor also contains reference for all available functions and script
objects. NiceLabel Automation includes some add-on functions, such as check-digit algorithms for
various bar codes. The add-on functions are accessible from the Script Editor.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Execute SQL Statement

The functionality from this topic is available in NiceLabel Automation Enterprise.

37

Sends SQL commands to an SQL server and collect the results. Use the commands SELECT,
INSERT, UPDATE, and DELETE.

You would use this action for two purposes.

¢ Obtain additional data from the database. The trigger will receive data for label print-
ing, but not all required values. For example, the trigger receives the value for Product ID
and Description, but no Price. We have to look the value for Price up in the
SQL database. For this purpose the Execute SQL Statement action will include a com-
mand, such as the following.

SELECT Price FROM Products
WHERE ID = :[Product ID]

o Update the database. When the label is printed, you want to update the record in the
database signaling the system that the particular records has been already processed. For
example, you would set the table field AlreadyPrinted to True for the currently processed
record.

UPDATE Products
SET AlreadyPrinted = True
WHERE ID = :[Product ID]

Or you would delete the current record from a database, because you don't need it any-
more.

DELETE FROM Products
WHERE ID = :[Product ID]

The ID is field in the database, Product ID is variable defined in the trigger and got value
assigned in some filter. To use value of a variable inside SQL statement, you have to put colon (:) in
front of the variable name.

Database Connection

Defines the connection parameters to the database. Before you can send SQL sentence to the data-
base, you have to set up the connection to it. Click Define button and follow on-screen instructions.
You can connect to a data source that can be controlled with SQL commands, so you cannot use
text files (CSV) and Excel files.

SQL Statement

Defines the SQL statement --or query-- to will execute. You can use statements from Data Manip-
ulation Language (DML) to execute queries upon existing database tables. You can use the stand-
ard SQL statements, such as SELECT, INSERT, DELETE and UPDATE, including JOINS, function
and keywords. You cannot use statements from Data Definition Language (DDL) to create data-
bases and tables (CREATE DATABASE, CREATE TABLE), or to delete them (DROP TABLE).

The editor control allows you to Save/Load the SQL statements to file. Clicking the Test button
open the Data Preview section, where you can test execution of SQL statements.

o Execution mode. Specifies the explicit mode of execution. With some complex SQL queries
it becomes increasingly difficult to automatically determine what is the supposed action. If
the built-in logic has troubles identifying your intent, manually set the main action.

e Returns set of records (SELECT). You expect to receive dataset with records.

¢ Does not return set of records (INSERT, DELETE, UPDATE). You are execut-
ing query that will not return the records. You want to either insert new records, delete
or update existing records. The result will be status response about how many rows
very affected by your query.

38

Save Result to Variable
Defines the variable that will store the result of the SQL statement.

¢ Result of SELECT statement. When you execute the SELECT statement, the result will
be dataset of records. You will receive the CSV-formatted text contents. The first line will con-
tain field names returned in a result. The next lines will contain records.

To extract the values from the returned dataset and use them in other actions, define the Con-
figuring Structured Text Filter and execute action Use Data Filter upon the contents of this var-
iable.

¢ Result of INSERT, DELETE and UPDATE statements. When you use INSERT,
DELETE and UPDATE statements, the result will be number indicating the number of rec-
ords affected in the table.

Data Preview

This section allows you to test the execution of your SQL statement upon a live data. To protect the
data from accidental updates, make sure the option Simulate execution is enabled. The state-
ments INSERT, DELETE and UPDATE will execute, so you will have feedback about how many rec-
ords will be affected, then the transactions will be reversed.

If you use trigger variables in the SQL statement, you will be able to enter their values for the test
execution.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

For Loop

The functionality from this topic is available in NiceLabel Automation Enterprise.

Executes the actions defined below this action multiple times. You would use this action to when
you want to execute a group of nested actions many times. All nested actions will be executed in a
loop as many times as defined by the difference between start value and end value.

39

Loop Settings

o Start value. Specifies the reference for the start point. You can use negative value. The
option Variable enables the variable start value. You must select a variable that will con-
tain numeric value for start.

« End value. Specifies the reference for the end point. You can use negative value. The option
Variable enables the variable end value. You must select a variable that will contain
numeric value for end.

e Save loop variable to a variable. Saves the current loop step value into a selected var-
iable. The loop step value can contain any value between start and end value. You would
save the value to variable to use it in some other action to know with the current iteration.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

« Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Load Variable Data

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Loads values of one or multiple variables from the associated file as were saved to file by the action
Save Variable Data. This action allows you to exchange data between triggers. You can load a
particular variable or all variables that exist in the file.

File

o File name. Specifies the file name where the variable values will be loaded from. It can be
hard-coded, and values will be loaded from the same file every time. The option Variable
enables the variable file name. You must select a variable that will contain the path and/or
file name when trigger is executed. Usually, the value to the variable is assigned by a filter.

File Structure

This section defines the structure of the variable file. The structure has to match the structure as
was used to save the variables to file.

40

o Delimiter. Specifies the delimiter in the data file. You can select a predefined delimiter, or
enter a custom one.

o Text qualifier. Specifies the text qualifier. You can select a predefined delimiter, or enter a
custom one.

¢ Encoding. Specifies the encoding mode used in the data file. UTF-8 makes a good default
selection.

Variables

This section defines the variables that will be read from the data file. Values of the existing var-
iables will be overwritten with values from the file.

o All variables. Specifies that all variables defined in the data file will be read.

e Selected variables. Specifies that only the selected variables will be read from the data
file.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Message
Writes a custom entry into the log file.

Usually, the log file contains application-generated strings and error descriptions. Use this action
to write custom string. This is useful for configuration troubleshooting.

Contents

o Caption. Specifies title of the custom message. The option Variable enables the variable
title. You must select a variable that will contain the title when trigger is executed.

e Message. Specifies contents of the custom message. The option Variable enables the var-
iable title. You must select a variable that will contain the title when trigger is executed.
Usually, you will prepare variable contents in some other action, then use it here.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

41

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Open Document / Program

Interfaces with external program and executes it in the command-line. The external program can
execute some additional processing and provide result back to the NiceLabel Automation. You can
use the name of the executable in the command-line, or you can provide the file name to open it in
the associated application. Because NiceLabel Automation runs in service mode, the latter option
would only make sense if you allow the service to interact with the desktop.

You can feed the value of variable(s) to the program by listing them in the command-line in square
brackets.

C:\Applications\Processing.exe [variablel] [variable2]

To receive data from the external application, the application must save it do disk, from where you
can read it back into trigger.

File

o File name. Specifies the path and file name. They can be hard-coded, and the same file will
used every time. If you use just file name without the path, the folder where configuration
file (.MISX) is saved will be used. The option Variable enables the variable file name. You
must select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

Execution Options

o Hide window. Specifies that the application's window will not be shown to the user.
Because NiceLabel Automation runs as service application, the window won't be shown until
you allow the service to interact with the desktop.

« Wait for completion. Specifies that action execution will wait for this action to complete
before continuing with the next action in the list. Enable this option if the next action
depends on the result from the external application.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is

42

a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Open Label

Specifies the name of label file for printing. When the action is executed the specified label template
will be opened in memory. There is no limit on the number of labels that can be opened con-
currently.

In this example the NiceLabel Automation will load the label 1abel.1bl from the folder
C:\ProjectA\Labels.

C:\ProjectA\Labels\label.lbl

If you don't specify the file path, NiceLabel Automation will try to load label from the folder where
configuration file ((MISX) is saved, then from the label folder as specified in the Options. You can
also use relative paths to reference your label files. For example, when the action receives the fol-
lowing input the label 1abel.1bl will load relatively from the location of configuration file - two
folders up, then down to folder Projecta and then to folder Labels.

..\..\ProjectA\Labels\label.lbl

NiceLabel Automation runs as service under the defined Windows account and with inherited per-
missions from that account. Make sure the account has at least read-only access to the label files. A
good practice is to use the UNC notation for network locations (e.g. use
\\server\share\label.1lbl and not mapped drive G:\1label.1bl). For more information, see
topic Access to Network Shared Resources.

File

o Label. Specifies the label name. It can be hard-coded, and the same label will print every
time. The option Variable enables the variable file name. You must select a variable that
will contain the path and/or file name when trigger is executed. Usually, the value to the var-
iable is assigned by a filter.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

43

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Print Label

Executes the label printing. The action cannot be used on its own. You must always nest this

action under the Open Label action to reference the label to print. This allows you to have many
labels opened at the same time, and you can specify which label must print. When issuing this com-
mand the label will print using the printer driver defined in the label template. If that printer driver
is not found on the system, the label will print using system default printer driver. You can override
the printer driver using the command Set Printer.

To achieve high performance label printing, NiceLabel Automation enables two settings by default:

o Parallel processing. Multiple print processes are all carried out simultaneously. The
number of background printing threads depend on the hardware, specifically on the proc-
essor type. Each processor core can accommodate one printing thread, and this default can
be changed. For more information, see topic Changing Multi-threaded Printing Defaults.

e Asynchronous mode. As soon as the trigger pre-processing completes and the instructions
for the print engine are available, the printing thread takes the over. The control is returned
to the trigger so it can accept the next incoming data stream as soon as possible. When the
printing is done in the synchronous mode , the control is not returned to the trigger until the
print process is finished with print file generation. This can take a while, but the trigger has
a benefit of providing the feedback back to data-providing application. For more information,
see topic Synchronous Print Mode.

Number of Labels
This section specifies the number of labels you want to print.
o Fixed. Specifies the label quantity to print every time.

e Variable. Specifies the variable that will define the label quantity. Value of the variable is
usually assigned by the action Use Data Filter and must be integer.

¢ Unlimited. Typically, you would use this option in two scenarios.

1. Indicate to the printer to continuously print the same label until it is switched off, or
it receives a command to clear its memory buffer.

2. The trigger doesn't provide and data, but only acts as a signal that "event has hap-
pened". The logic to acquire necessary data is on the label. Usually, a connection to a
database is configured on the label and at every trigger the label must connect to the
database, and acquire all records from the database. In this case, the option "unlim-
ited" is understood as "print all records from the database".

e Variable quantity. Specifies that some label variable contains the label quantity infor-
mation. The trigger doesn't receive the number of labels to print so it passes the decision to

44

the label template. The label might contain a connection to a database, which will provide
the label quantity, or there is some other source of quantity information. One label variable
must be defined as "variable quantity”. For more information, see label designer's user guide.

Advanced
This section specifies non-frequently used label quantity related settings.

e Number of skipped labels. Specifies the number of labels that will be skipped on the first
page of labels. The sheet of labels might be printed once already, but not entirely. You can re-
use the same sheet by offsetting the starting position. This option is applicable, when you
print labels to sheets of labels, not rolls of labels, so it's effective for office printers not label
printers. The value can be hard-coded, or some variable can provide the number.

o Identical label copies. Specifies the number of label copies to make for each unique label.
This option produces the same result as the main Number of Labels option, when you have
fixed labels. With variable labels, such as labels using counters, you can get the real label
copies.

o Label sets. Specifies how many times the entire label printing process should repeat. For
example, the trigger will receive a CVS contents with 3 lines of data, so 3 labels are expected
to print (1, 2, 3). If you set this option to 3, the printout will be in the following order 1, 2, 3,

1,2,3,1,2,3.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Printer Status

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Communicates with the printer to acquire its real-time state. As a result the information about
errors, spooler status, number of jobs in the spooler is collected, so you can identify possible errors.
There are some prerequisites to enable printer status reporting, such as:

e You must use NiceDriver for your printer.

o The printer must be capable of reporting the live status.

45

The interface you use to connect to the printer must support bidirectional messaging.

Examples of possible usage. (1) You will verify the printer status before printing. If the printer
is in error state, you will print the label to the backup printer. (2) You will count the number of

jobs waiting in a spooler of main printer. If there are too many, you will print label to alter-

native printer. (3) You will verify the printer status before printing. If the printer is in error
state, you will not print labels, but report the error back to the main system using any of the
outbound actions, such as Send Data to TCP/IP Port, Send Data to HTTP, Execute SQL State-
ment, or Web Service.

Printer

Printer name. Specifies the printer name. You can select the printer from the list of locally
installed printer drivers, or you can enter any printer name. The option Variable enables
the variable printer name. When enabled, you must select a variable that will contain the
printer name when trigger is executed. Usually, the value to the variable is assigned by a
filter.

Data Mapping

This section defines the parameters that are returned as result of the Printer Status action.

Printer status. Specifies the printer live status as string. If the printer is in multiple states,
all states are merged together in one string, delimited by comma ",". If there is no problem
with the printer, this field has no value. Printer status might be "Offline", "Out of labels",
"Ribbon near end". There is no standardized reporting, so each printer brand can use dif-
ferent status messages.

Printer error. Specifies the boolean (true/false) value of the printer error status.
Printer offline. Specifies the boolean (true/false) value of the printer offline status.
Driver paused. Specifies the boolean (true/false) value of the driver pause status

NiceDriver driver. Specifies the boolean (true/false) value of the NiceDriver status. Provides
information if the selected driver is NiceDriver.

Spooler status. Specifies the spooler status as string, as is reported by the Windows sys-
tem. The spooler can be simultaneously in several statuses. In this case the statuses are

nn

merged with comma ",".

Spooler status ID Spooler status description

(o)

1
2
4

No status.

Printer is paused.

Printer is printing.
Printer is in error.

Spooler status ID. Specifies the spooler status as number, as is reported by the Windows
system. The spooler can be simultaneously in several statuses. In this case the status IDs
contains added IDs. For example, value 5 represents statuse IDs 4 and 1, which translates to
"Printer is in error, Printer is paused". Refer to the table above.

Number of jobs in the spooler. Specifies the number of jobs that are in the spooler for
the selected printer.

Action Execution and Error Handling

Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

46

Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Read Data From Serial Port

Collects data received on the serial port (RS-232) and saves it to selected variable. You can use this
action to communicate with the external serial port devices.

Port

Port name. Specifies the port name, where your external device connects to. This can be a
hardware COM port or virtual COM port.

Port Settings

This section displays options for the serial port connection. Make sure the settings here match the
settings on your external device.

Bits per second. Specifies the speed that the external device will use to communicate to
the PC. The usual alias used with the setting is "baud rate".

Data bits. Specifies the number of data bits in each character. 8 data bits are almost uni-
versally used in newer devices.

Parity. Specifies the method of detecting errors in transmission. The most common parity
setting, however, is "none", with error detection handled by a communication protocol (flow
control).

Stop bits. Stop bits sent at the end of every character allow the receiving signal hardware to
detect the end of a character and to resynchronise with the character stream. Electronic
devices usually use one stop bit.

Flow control. A serial port may use signals in the interface to pause and resume the trans-
mission of data. For example, a slow device might need to handshake with the serial port to
indicate that data should be paused while the device processes received data.

Options

Read delay. Specifies the optional delay when reading the data from the serial port. After
the delay, the entire contents of the serial port buffer will be read.

Send initialization data. Specifies the string that is sent to selected serial port before data
is read. This provides the functionality to initialize the device to be able to provide the data.
You can also use it to send a specific question to the device, and receive the specific answer.
Click the arrow button to insert special characters, such as control codes. For more infor-
mation, see topic Entering Special Characters.

47

Data Extraction

« Enable data extraction. Provides a functionality to extract part of the received data. You
can define the start and end position. All characters within these positions will be extracted.
To use stronger extraction techniques, you can parse the received data through filters. For
more information, see topic Understanding Filters.

Result

e Save data to variable. Specifies the variable that will store the received data. Once you
have captured data and saved it to variable, you can manipulate it using filters, and/or as
input to other actions.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Redirect Printing To File

Diverts the print job to file. Instead of sending the created print file to the printer port as defined in
the printer driver, the printout is redirected to file. You can append data to the existing file, or over-
write existing file.

NiceLabel Automation runs as service under defined Windows user account. Make sure this user
account has privileges accessing the specified folder with read/write permissions. For more infor-
mation, see topic Access to Network Shared Resources.

File

o File name. Specifies the file name. It can be hard-coded, and printing will be redirected to
the same file every time. The option Variable enables the variable file name. You must
select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

o Overwrite the file. If the specified file already exists on the disk, it will be overwritten.

o Append data to the file. The job file will be appended to the existing data in the provided
file.

Action Execution and Error Handling

48

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.

You can use this functionality for testing.

Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Run Command File

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Executes the commands in the selected command file. All types of files provide commands that
NiceLabel Automation will execute in order from top to bottom. Command files usually provide
data for a single label, but you can define files of any level of complexity. For more information, see
topic Reference and Troubleshooting.

File

o File type. Specifies the type of the command file to be executed.

o File name. Specifies the command file name. It can be hard-coded, and the same command

file will execute every time. The option Variable enables the variable file name. You must
select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

How to receive a command file in a trigger and execute it

When the trigger receives the command file and you want to execute it, do the following:

1.

2.

4.
5.

In Variables tab, click the Internal Variable button in the ribbon.

In the drop down enable the internal variable DataFileName. This internal variable pro-
vides the path and file name to the file that contains data received by the trigger. In this
case, the contents is command file. For more information, see topic Internal Variables.

In Actions tab, add the action to execute the command file, such as Run Command File, Run

Oracle XML Command File, or Run SAP AIl XML Command File.
For the action Run Command File, select the type of the command file in File type.

Enable the option Variable.

Select the variable DataFileName from the list of available variables.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.

49

You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Run Oracle XML Command File

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Executes printing with data from an Oracle XML-formatted file.

NiceLabel Automation internally supports XML files with the "Oracle XML" structure, which are
defined by Oracle Warehouse Management software. Use this action as a shortcut to execute Oracle
XML files directly without any need to parse them with XML filter and map values to variables. To
be able to use this action, the XML file must conform to Oracle XML specifications. For more infor-
mation, see topic Oracle XML Specifications

How to receive a command file in a trigger and execute it
When the trigger receives the command file and you want to execute it, do the following:
1. In Variables tab, click the Internal Variable button in the ribbon.

2. In the drop down enable the internal variable DataFileName. This internal variable pro-
vides the path and file name to the file that contains data received by the trigger. In this
case, the contents is command file. For more information, see topic Internal Variables.

3. In Actions tab, add the action to execute the command file, such as Run Command File, Run

Oracle XML Command File, or Run SAP AIl XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.
5. Select the variable DataFileName from the list of available variables.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

50

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Run SAP All XML Command File

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Executes printing with data from an SAP AIl XML-formatted file.

NiceLabel Automation internally supports XML files with the "SAP AIl XML" structure, which are
defined by SAP software. Use this action as a shortcut to execute SAP AIl XML files directly without
any need to parse them with XML filter and map values to variables. To be able to use this action,
the XML file must conform to SAP AIl XML specifications. For more information, see topic SAP AIl
XML Specifications.

How to receive a command file in a trigger and execute it
When the trigger receives the command file and you want to execute it, do the following:
1. In Variables tab, click the Internal Variable button in the ribbon.

2. In the drop down enable the internal variable DataFileName. This internal variable pro-
vides the path and file name to the file that contains data received by the trigger. In this
case, the contents is command file. For more information, see topic Internal Variables.

3. In Actions tab, add the action to execute the command file, such as Run Command File, Run

Oracle XML Command File, or Run SAP AIIl XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.
5. Select the variable DataFileName from the list of available variables.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

51

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Save Data To File

The functionality from this topic is available in NiceLabel Automation Enterprise.

Saves variable value or other data streams into the file. The service must have write access to the
defined folder. For more information, see topic Access to Network Shared Resources.

File

« File name. Specifies the path and file name. They can be hard-coded, and the same file will
used every time. If you use just file name without the path, the folder where configuration
file (.MISX) is saved will be used. The option Variable enables the variable file name. You
must select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

If file exists

e Overwrite the file. Specifies that the specified will be overwritten, if it already exists on
the disk.

o Append data to the file. Specifies that data will be written at the end of the file, if the file
of defined name already exists.

Contents

e Use data received by the trigger. The file will contain the original data as received by
the trigger. Effectively, this will make a copy of the incoming data.

e Custom. The data will contain the contents as provided in the text area. You can combine
fixed values, variable values and special characters in the contents. To insert variables and
special characters, click the arrow button to the right of the text area.

¢ Encoding. Specifies the encoding of the output file.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to

52

execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Save Variable Data

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Saves values of one or multiple variables to the associated file. This action allows you to exchange
data between triggers. To read data back into trigger, use the action Load Variable Data. The
values are saved in the CSV format with first line containing variable names. When variables have
multi-line values the newline characters (CR/LF) will be encoded as \n\r. The service must have
write access to the defined folder. For more information, see topic Access to Network Shared
Resources.

File

o File name. Specifies the file name where the variable values will be saved into. It can be
hard-coded, and values will be saved into the same file every time. The option Variable ena-
bles the variable file name. You must select a variable that will contain the path and/or file
name when trigger is executed. Usually, the value to the variable is assigned by a filter.

If File Exists

e Overwrite the file. Specifies that the existing data file will be overwritten with new data.
The old contents is lost.

o Append data to the file. Specifies that the values of variables are appended to the exist-
ing data file. This option allows you to generate the "text database" file, such as CSV file.

File Structure

This section defines the structure of the variable file. The structure has to match the structure as
was used to save the variables to file.

o Delimiter. Specifies the delimiter in the data file. You can select a predefined delimiter, or
enter a custom one.

o Text qualifier. Specifies the text qualifier. You can select a predefined delimiter, or enter a
custom one.

o Encoding. Specifies the encoding mode used in the data file. UTF-8 makes a good default
selection.

Variables

This section defines the variables that will be read from the data file. Values of the existing var-
iables will be overwritten with values from the file.

o All variables. Specifies that all variables defined in the data file will be read.

o Selected variables. Specifies that only the selected variables will be read from the data
file.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.

53

You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Send Custom Commands

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Executes the entered custom commands. You must always nest this action under the Open Label
action to reference the label to which to apply the commands. For more information, see topic Cus-
tom Commands.

Majority of custom commands are available with individual actions, so in most cases you don't
need custom commands.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

54

Send Data To HTTP

The functionality from this topic is available in NiceLabel Automation Enterprise.

Sends data to the destination Web server using HTTP protocol and POST method. You can connect
to http:// and https:// URLs.

Connection Settings

o Destination. Defines the destination address, port and destination on the Web server. If the
Web server runs on default port 80, you can skip the port number. You can hard-code the
connection parameters and use fixed hostname or IP address. You can also use variable con-
nection parameters. For more information, see topic Using Compound Values.

If the variable hostname provides the Web server name and the variable port provides the

port number, you can enter the following for the destination:
[hostname] : [port]

o Timeout. Defines the timeout in which connection to the server will try to be established.

o Wait for status reply. Specifies that you want to receive the status feedback, weather the
data was sent successfully. The HTTP status code returned from the Web server will be saved
into selected variable. Status code in range 2XX are success code, common "OK" response is
code 200. Codes 5XX are server errors.

e Save status reply in a variable. Defines the variable that will store the status code
returned from the server.

Authentication

This section allows you to enter the credentials you need to connect to the Web server. You must
enter username and password, which can be fixed or can be provided with value of the variable.

Contents

This section allows you to define the contents you want to send to the Web server. You can use
fixed content, mix of fixed and variable content, or variable content alone. To insert variable con-
tent, click the button with arrow to the right of data area and insert variable from the list. For more
information, see topic Using Compound Values. The content-type of the data will be set to appli-
cation/x-www-form-urlencoded.

« Data. Specifies the contents that will be sent outbound.
¢ Encoding. Specifies the encoding of the send data.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to

55

execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Send Data To Printer

Sends data to the selected printer. Useful for sending pre-generated printer streams to any available
printer. NiceLabel Automation uses the installed printer driver in pass-through mode just to be able
to send data to the target port, where the printer is connected to, such as LPT, COM, TCP/IP or
USB port.

Possible scenario. The logic to generate the printer stream is hard-coded into some application,
which sends it to target printer. The company decided to change label printer with some other
model. The generated print stream is no longer compatible with new printer. NiceLabel Auto-
mation can be configured to capture the original print stream , extract data from it / make mod-
ifications, and send the updated print stream to the new printer.

Printer

o Printer name. Specifies the printer name. You can select the printer from the list of locally
installed printer drivers, or you can enter any printer name. The option Variable enables
the variable printer name. When enabled, you must select a variable that will contain the
printer name when trigger is executed. Usually, the value to the variable is assigned by a
filter.

Data Source
This section allows you to define the contents you want to send to the printer.

o Use data received by the trigger. Defines that the trigger-received data it used. In this
case you received the printer stream as input to the filter and want to redirect it to printer
without any modification. The same result can be achieved by enabling the internal variable
DataFileName and using the contents of file it refers to. For more information, see topic
Internal Variables.

o File name. Defines the path and file name of the file containing printer stream. Contents of
the specified file is used. The option Variable enables the variable file name. You must
select a variable that will contain the path and/or file name.

e Variable. Defines the variable that contains printer stream. The contents of selected var-
iable is used.

¢ Custom. Defines the custom contents. You can use fixed content, mix of fixed and variable
content, or variable content alone. To insert variable content, click the button with arrow to
the right of data area and insert variable from the list. For more information, see topic Using
Compound Values.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is

56

a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Send Data To Serial Port

Sends data to a serial port. You would use this action for communication with external serial-port
devices. Make sure the port settings match on both ends, in the action and in the serial-port device.
Serial port can be used by one application in the machine. To successfully use the port from this
action, no other application must use the port, not even any printer driver.

Port

« Port name. Specifies the port name, where your external device connects to. This can be a
hardware COM port or virtual COM port.

Port Settings

This section displays options for the serial port connection. Make sure the settings here match the
settings on your external device.

o Bits per second. Specifies the speed that the external device will use to communicate to
the PC. The usual alias used with the setting is "baud rate".

« Data bits. Specifies the number of data bits in each character. 8 data bits are almost uni-
versally used in newer devices.

o Parity. Specifies the method of detecting errors in transmission. The most common parity
setting, however, is "none", with error detection handled by a communication protocol (flow
control).

o Stop bits. Stop bits sent at the end of every character allow the receiving signal hardware to
detect the end of a character and to resynchronise with the character stream. Electronic
devices usually use one stop bit.

o Flow control. A serial port may use signals in the interface to pause and resume the trans-
mission of data. For example, a slow device might need to handshake with the serial port to
indicate that data should be paused while the device processes received data.

Contents

This section allows you to define the contents you want to send to serial port. You can use fixed
content, mix of fixed and variable content, or variable content alone. To insert variable content,
click the button with arrow to the right of data area and insert variable from the list. For more infor-
mation, see topic Using Compound Values.

o Data. Specifies the contents that will be sent outbound.

Action Execution and Error Handling

57

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Send Data To TCP/IP Port

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Sends data to the destination socket. Define the target IP address and port number.
Connection Settings

o Destination. Defines the destination address and port of the TCP/IP server. You can hard-
code the connection parameters and use fixed hostname or IP address. You can also use var-
iable connection parameters. For more information, see topic Using Compound Values.

If the variable hostname provides the TCP/IP server name and the variable port provides
the port number, you can enter the following for the destination:
[hostname] : [port]

Contents

This section allows you to define the contents you want to send to the TCP/IP server. You can use
fixed content, mix of fixed and variable content, or variable content alone. To insert variable con-
tent, click the button with arrow to the right of data area and insert variable from the list. For more
information, see topic Using Compound Values.

o Data. Specifies the contents that will be sent outbound.
¢ Encoding. Specifies the encoding of the send data.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

58

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Set Print Job Name

Specifies the name of the print job file as it appears in the Windows Spooler. A default print job
name is the name of the used label file, and this action will override it. You must always nest the
action under the Open Label action, so it applies to specific label file.

Print Job

« Name. Specifies the job name. It can be hard-coded, and the same name will be used for
every Label Print action. The option Variable enables the variable file name. You must
select a variable that will contain the path and/or file name when trigger is executed.
Usually, the value to the variable is assigned by a filter.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Set Print Parameter

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Allows fine-tuning the printer-driver related parameters, such as speed and darkness for label
printers, or paper tray for the laser printers.

59

If you use Set Printer action, make sure to use Set Print Parameter action after it. Set
Printer will recall the default printer driver settings.

Print Parameters
This section defines the available parameters you can fine-tune before printing.

o Paper bin. Defines the name of the paper bin containing the label media. Usually used with
laser and inkjet printers with multiple paper bins. The provided name of the paper bin must
match the name of the bin in the printer driver. For more information, see printer driver prop-
erties.

o Print speed. Defines the value for the print speed and overrides setting from the label. The
provided value must be in range of accepted values. For example, one printer model accepts
a range of values from o to 30, the other printer model accepts values from -15 to 15. For
more information, see printer driver properties.

o Darkness. Defines the darkness of the printed objects on the paper and overrides setting
from the label. The provided value must be in range of accepted values. For more infor-
mation, see printer driver properties.

o Print offset X. Applies the horizontal offset. The label printout will be repositioned by the
specified number of dots in the horizontal direction. You can define negative offset.

o Print offset Y. Applies the vertical offset. The label printout will be repositioned by the spec-
ified number of dots in the vertical direction. You can define negative offset.

The option Variable next to each parameter enables the variable contents. You must select a var-
iable that will contain the value of the selected parameter when trigger is executed.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Set Printer

Specifies the name of the printer where the label will print. Use this action to override the printer
defined in the label template. This action is also useful when you must print the same label

- 60 -

template to different printers. You must always nest this action under the Open Label action to ref-
erence the label, where to change the printer. This action reads the default settings --such as speed
and darkness-- from the selected printer driver and applies them to the label. If you don't use the
Set Printer action, the label will print to the printer as defined in the label template.

Be careful, when changing the printer from one printer brand to another, e.g. from Zebra to
SATO, or even from one printer model to another model of the same brand. The printer settings
might not be compatible and label printout might not be identical. Also, label design opti-
mizations for original printer, such as internal counters, and internal fonts, might not be avail-
able on the selected printer.

Printer

« Printer name. Specifies the printer name. You can select the printer from the list of locally
installed printer drivers, or you can enter any printer name. The option Variable enables
the variable printer name. When enabled, you must select a variable that will contain the
printer name when trigger is executed. Usually, the value to the variable is assigned by a
filter.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Set Variable

Assigns a new value to the selected variable. Usually the variables will get their values by the Use
Data Filter action, which will extract fields from received data and map them to variables. You
might also need to set the variable values yourself, usually for troubleshooting purposes. The var-
iable values are not remembered from one trigger to another, but they are kept while the same
trigger is being processed.

Variable
This section allows you to define the contents you want to send assign to the selected variable.
o Name. Specifies the name of the variable that will get a new value.

e Value. Specifies the new value of the variable. You can use fixed content, mix of fixed and
variable content, or variable content alone. To insert variable content, click the button with

- 61 -

arrow to the right of data area and insert variable from the list. For more information, see
topic Using Compound Values.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

« Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

String Manipulation

Formats the values of selected variables. You can perform actions such as: delete leading and trail-
ing spaces, search and replace characters, and delete opening and closing quotes. Usually you need
this functionality when trigger receives unstructured or legacy data, and you have to parse it with
the Unstructured Data filter. This action allows you to fine-tune the data value.

If this action doesn't provide enough string manipulation power for a particular case, you can
use the action Execute Script and use Visual Basic Script or Python to manipulate your data.

Variables
This section defines the variables to which the string manipulation will apply.
o All variables. Specifies that selected manipulation(s) will apply to all defined variables.

¢ Selected variables. Specifies that selected manipulation(s) will apply to all selected var-
iables.

Format Text

This section defines the string manipulation functions that will be applied to the selected variables
or fields. You can select one or several functions. The functions will be applied in the order as
selected in the user interface, from top to bottom.

« Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

o Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

o Delete opening closing characters. Deletes the first occurrence of the selected opening
and closing characters that are found in the string.

-62 -

Example: if you use "{" for opening character and "}" for the closing character, the input
string { {selection}} will be converted to {selection}.

e Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

There are several implementations of the regular expressions in use. NiceLabel Auto-
mation uses the .NET Framework syntax for the regular expressions. For more infor-
mation, see Knowledge Base article KB250.

« Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are char-
acters with decimal ASCII values between 0-31 and 127-159.

¢ Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-159.

e Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

e Search and delete everything after. Finds the provided string and deletes all characters
from the string until the end of the data. The found string itself can also be deleted.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Try

The functionality from this topic is available in NiceLabel Automation Enterprise.

Allows easy monitoring for errors while actions execute and running a different set of actions, if
error does occur. The action creates Do and On error placeholders for actions. All actions that
should execute when trigger fires, must be placed inside Do placeholder. When no error is detected
when executing actions from Do placeholder, they are the only actions that ever execute. However,

63

http://kb.nicelabel.com/index.php?t=faq&id=250

when an error does happen, the execution of actions from Do placeholder will stop and execution
switches over to actions from On error placeholder.

You could achieve the same result defining conditions on the actions, but the method with Try
action is much more elegant and easier to configure.

This action provides easy error detection and execution of "feedback" or "reporting" actions. For
example, if an error happens during trigger processing, you can send out the warning. For more
information, see topic Print Job Status Feedback.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Use Data Filter

Executes the filter rules on the input data source. As a result the action will extract fields from the
input data and map their values to the linked variables. So, the action executes the selected filter
and assigns the variables with respective values.

o Elements on lower level. The action can create sub-level elements, identified with "for
each line" or "for each data block in ...". When you see those, the filter will extract the
data not on the document level (with hard-coded field placement), but relatively from the
sub areas that contain repeatable sections. In this case make sure that you position your
actions below such elements. You have to nest the action under such elements.

e Mapping variables to fields. The mapping between trigger variables and filter fields is
defined either manually, or is automated, dependent on how the filter is configured. If you
have manually defined fields in the filter, you also have to manually map fields to the cor-
responding variable.

It's a good practice to define fields using the same names as are names of the label variables. In
this case the button Auto map will map matching names automatically.

64

o Testing the execution of filter. When the mapping of variables to fields is done, you can
test the execution of the filter. The result will be shown on-screen in table. Number of lines in
the table represent the number times actions will execute in the selected level. The column
names represent the variable names. The cells contain values as assigned to the respective
variable by the filter. The default preview file name is inherited from the filter definition, you
can execute filter on any other file.

For more information, see topic Understanding Filters and topic Examples.

Filter

« Name. Specifies the name of the filter you want to apply. The list contains all filters defined
in the current configuration. You can use the bottom three items in the list to create new
filter.

Selecting some other filter will remove all actions nested under this action. If you want to keep
currently defined actions, move them outside of the Use Data Filter action. If you have lost
your actions, you can Undo your action and revert to the previous configuration.

Data Source
This section allows you to define the contents you want to send to the printer.

o Use data received by the trigger. Defines that the trigger-received data it used. In this
case the action will use the original data received by the trigger and execute the filter rules
upon it.

o File name. Defines the path and file name of the file containing the data upon which you
will execute filter rules. Contents of the specified file is used. The option Variable enables
the variable file name. You must select a variable that will contain the path and/or file name.

e Custom. Defines the custom contents. You can use fixed content, mix of fixed and variable
content, or variable content alone. To insert variable content, click the button with arrow to
the right of data area and insert variable from the list. For more information, see topic Using
Compound Values.

Data Preview

This section provides the preview of the filter execution. The contents of preview file name is read
and the selected filter applied to it. The rules in the filter will extract fields. The table will display
result of the extraction. Each line in the table represents data for one label. Each column represents
the variable. To see any result, first you have to configure mapping of fields to respective variables.
Dependent on the filter definition, you could map the variables to fields manually, or it is done
automatically.

o Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the pre-
view file name, the new file name will be saved.

e Open. Selects some other file upon which you want to execute the filter rules.

¢ Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

o Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is

65

a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Verify License

Reads the activated license and executes the actions nested below this action only if a certain
license type is used.

This action provides protection of your trigger configuration from running on the unauthorized
machines. The license key that activates the software can also encode a Solution ID. This is a
unique number that identifies the solution provider that sold the NiceLabel Automation license. If
the configured Solution ID matches the Solution ID encoded in the license, the target machine is
allowed to run nested actions, effectively limiting execution to licenses sold by the solution pro-
vider.

The triggers can be further encrypted and locked so only authorized users can open the con-
figuration. For more information, see topic Protecting Trigger Configuration.

License Information

e Solution ID. Defines the ID number of the licenses that are allowed to run the nested
actions.

o If the entered value is not the Solution ID read from the license, the nested actions
will not execute.

o If the entered value is 0, the actions will only execute if some valid license is found.
Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

e Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

- 66 -

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Web Service

The functionality from this topic is available in NiceLabel Automation Enterprise.

Connects to a SOAP server and executes the methods on it. This action will send inbound values to
the Web service and collect the result.

Example. You must print product labels. Your trigger would receive only segment of the
needed data. E.g. the trigger receives the value for Product ID and Description, but not
the Price. The price information is available in a separate database, which is accessible over
Web service call. The Web service defines the function by it WDSL definition, such as the input
to the function is Product ID and output is Price. The Web Service action will send Prod-
uct ID tothe Web service, which will make an internal lookup to its database and provide the
matching Price as the result. The action will save the result in the variable, which can be used
on the label.

Web Service Definition

e WSDL. Specifies the location of Web Service Description Language (WSDL) definition. This
is XML-based interface description language that describes the functionality offered by the
Web service. The WSDL is usually provided by the Web service itself. Typically you would
enter the link to WSDL and click the Import button to read the definition.

e Method. Lists the methods (functions) available in selected Web service. The list is auto-
matically populated from the WSDL definition.

« Parameters. Defines the input and output variables to the selected method (function). The
inbound parameters expect input from the trigger. For testing and troubleshooting reasons
you can enter fixed value and preview result on-screen. But typically you would select a var-
iable for inbound parameter. Value of that variable will be used as input parameter. The out-
bound parameter provides the result from the function. You must select the variable that will
store the result.

Data Preview

« Execute. Executes Web service call. It sends values of inbound parameters to the Web serv-
ice and provides the result in the outbound parameter. Use this functionality to test the Web
service execution. You can enter values for inbound parameters and see the result on-screen.
When satisfied with execution, you would replace entered fixed value for inbound parameter
with a variable from the list.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

67

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

XML Transform

The functionality from this topic is available in NiceLabel Automation Enterprise.

Transforms the XML document into another document using the provided transformation rules.
The rules must be provided by the .XSLT definition in a file, or by other variable source. The action
allows you to convert the complex XML documents into XML documents of more manageable struc-
ture. XSLT stands for XSL Transformations. XSL stands for EXtensible Stylesheet Language, and is
a style sheet language for XML documents.

The action will store the converted XML document in the selected variable. The original file is left
intact on the disk. If you want to save the converted XML document, use the action Save Data to
File.

Typically, you would use the action to simplify XML documents provided by the host appli-
cation. Defining XML filter for the complex XML document might take a while, or in some cases
the XML is just too complex to be handled. As alternative, you would defined the rules to con-
vert XML into structure that can be easily handled by the XML filter, or even skipping the need
for a filter altogether. You can convert XML document into natively-supported XML, such as
Oracle XML and then simply executing it with the Run Oracle XML Command File action.

Data Source
This section defines the XML data that you want to transform.

o Use data received by the trigger. Defines that the trigger-received data it used. The
same result can be achieved by enabling the internal variable DataFileName and using the
contents of file it refers to. For more information, see topic Internal Variables.

o File name. Defines the path and file name of the file containing the XML file to transform.
Contents of the specified file is used. The option Variable enables the variable file name.
You must select a variable that will contain the path and/or file name. The action will open
the specified file and apply transformation on file contents, which must be XML formatted.

e Variable. Defines the variable that contains printer stream. The contents of selected var-
iable is used and it must contain XML structure.

Transformation Rules Data Source (XSLT)

This section defines the transformation rules (.XSLT document) that will be applied to the XML doc-
ument.

- 68 -

o File name. Defines the path and file name of the file containing the transformation rules
(.XSLT).

¢ Custom. Defines the custom contents. You can use fixed content, mix of fixed and variable
content, or variable content alone. To insert variable content, click the button with arrow to
the right of data area and insert variable from the list. For more information, see topic Using
Compound Values.

Save Result to Variable

e Variable. Specifies the variable that will contain the result of the transformation process.
E.g. if you will use the rules that will convert complex XML into simpler XML, the contents
of the selected variable is the simple XML.

Action Execution and Error Handling

o Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
You can use this functionality for testing.

¢ Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute. This is
a method to not execute action every time, but only when monitored variables have certain
values.

o Ignore failure. Specifies to ignore the error and continue with the next action, even if
execution of the current action fails. The error is still logged, but it will not break the
execution of actions.

For example, at the end of printing you might want to send the status update to an exter-
nal application. If printing action fails the trigger stops processing actions. In order to
execute the reporting even after failed print action, the Print Label action must have the
option Ignore failure enabled.

e Save error to variable. Specified to save the error description to some variable, when
some error breaks the execution of this action. The same cause of error is also saved to inter-
nal variables ActionLastErrorId and ActionLastErrorDesc. For more information,
see topic Internal Variables.

Testing Triggers

Testing Triggers

When you have the configuration of the trigger done, that's only half of the job done. Before deploy-
ing the trigger you must thoroughly test is for its intended operation upon incoming data and ver-
ify the execution of actions.

The final test should always be done in the real environment, or at least close approximation of it,
running the triggers in Automation Manager. You might want to have another NiceLabel Auto-
mation set up in the test environment. However, in NiceLabel Automation you can also test triggers
while you are still configuring them. You can me more productive, if you can test the functionality
of your trigger definition on-the-fly without any need for real deployment.

Testing execution of the individual actions

Some of the actions have preview functionality allowing you to change the input parameters and
see the result of the action on-screen.

¢ Use Data Filter. The action will show live preview of the parsed data. The rules from the
selected filter are applied to the selected input data file and result shown in the table. If you

69

use sub- or assignment areas, you can see the preview for every level of filter definition.

« Execute SQL Statement. The action will show preview of the execution of defined SQL
statement. You can see the dataset resulting from the SELECT statement and number of
rows affected by the UPDATE, INSERT and DELETE statements. The preview execution is
transaction-safe and you can roll-back all changes. You can change the input query param-
eters and see how they influence the result.

e Web Service. The action will show preview of the execution of selected method (function)
from Web Service. You can change the input parameters and see how they influence the
result.

o Execute script. The action will check for syntax errors in the provided script, but also
execute the script. You can change the input parameters and see how they influence the
script execution.

Testing the execution of trigger and displaying label preview on-screen

To test the trigger from the ground up, use the built-in Run Preview functionality. You can run
preview for every trigger, no matter its type. The trigger won't fire upon changes of the monitored
event, only trigger started in the Automation Manager can do it. Instead, the trigger will execute
actions based on the data saved in a file. You have to make sure you have file that contains sample
data that trigger will accept in real-time deployment.

The trigger will execute all defined actions, including data filtering, and display label preview(s)
on-screen. The preview will simulate the printing process to every detail. The labels would print
with the same composition and contents as they are previewed. This includes the number of labels
and their contents. You will learn about how many print jobs are produced, how many labels are in
each job and preview of each label. You can navigate from one label to the next in the selected print
job.

The Log pane displays the same information as would be displayed in the Automation Manager.
Expand the log entries to see full detail.

When you run the preview, all action defined for the selected trigger will run, not just the Print
Label action. Be careful, when you use actions that will modify the data, such as Execute SQL
Statement, or Web Service, because their execution is irreversible.

To preview the labels, do the following:
1. Open the trigger configuration.
2. Make sure the trigger configuration is saved.
3. Click the button Run Preview in Preview group in the ribbon.
4. Browse for the data file providing the typical contents that trigger will accept.
5. See the result in a Preview tab.
Testing deployment on pre-production server

It makes a good practice to deploy the configuration to Automation Manager on a pre-production
server, before the deployment on the production server. Testing in pre-production environment
might identify additional configuration problems not detected when testing the trigger in the Auto-
mation Builder alone. The performance can also be stress-tested by adding the load to the trigger
and see how it performs. The testing will provide the important information about the available
throughput and identify weak points. Based on the conclusions you can then implement various
system optimization techniques, such as optimizing label design to produce smaller print streams,
and optimizing the overall flow of data from the existing application into NiceLabel Automation.

70

Protecting Trigger Configuration
The trigger configuration can be protected using two methods in NiceLabel Automation software.

¢ Locking trigger. Using this method you lock the trigger configuration file and protect it
with a password. Without the password nobody can edit the trigger. Enable the option Lock
and encrypt trigger in trigger Settings -> Security.

e Setting access permissions. Using this method you rely on the user permissions as are
defined in the NiceLabel Automation Options. You can enable user groups and assign dif-
ferent roles to each group. If the group is assigned with the edit privileges, all members of
the group can edit triggers. This method requires that you enable user logins. You can use
Windows users from local groups or active directory, or you can define NiceLabel Auto-
mationusers. See User rights and access in NiceLabel Automation Configuration.

71

Running And Managing Triggers

Deploying Configuration

When you have configured and tested the triggers in the Automation Builder, you have to deploy
configuration to the NiceLabel Automation service and start the triggers. At that time the triggers
become live and start monitoring defined events.

To deploy the configuration, use any of the following methods.
Deploy from Automation Builder

1. Start Automation Builder.

2. Load the configuration.

3. Go to Configuration Items tab.

4. Click the Deploy Configuration button in the Deploy ribbon group.
The configuration will be loaded inside the Automation Manager running on the same
machine.

5. Start the triggers you want to make active.

If this configuration was already loaded, deployment will force its reload, keeping the active status
of the triggers.

Deploy from Automation Manager
1. Start Automation Manager.
2. Go to Triggers tab.
3. Click +Add button and browse for the configuration on the disk.
4. Start the triggers you want to make active.
Deploy from command-line

To deploy the configuration C: \Project\Configuration.MISX and run the trigger within
named CSVTrigger, do the following:

NiceLabelAutomationManager.exe ADD c:\Project\Configuration.MISX
NiceLabelAutomationManager.exe START c:\Project\Configuration.MISX CSVTrigger

For more information, see topic Controlling Automation with Command-line Parameters.

Event Logging Options

Some functionality in this topic requires purchase of product from Management products.

NiceLabel Automation will log events to various destinations, dependent on its deployment sce-
nario. The first two logging features are available with every NiceLabel Automation product.

« Logging to log database. Logging to internal log database is always enabled and logs all
events. When viewing the logged information you can use filter to display events matching
the rules. For more information, see topic Using Event Log.

¢ Logging to Windows Application Event Log. Important events are saved to the Win-
dows Application Event Log in case the NiceLabel Automation could not start , so you have
a secondary resource for logged events.

72

o Logging to Enterprise Print Manager. Logging to Enterprise Print Manager (EPM) is
available when you couple NiceLabel Automation with one of the Management products.
EPM is Web-based management console recording all events from one or more NiceLabel
Automation servers. It also support drilling for data, but also automated alerts in case of cer-
tain event, printer management, document storage, file versioning, workflows and label
reprint.

Managing Triggers

The application Automation Manager is the management part of the NiceLabel Automation soft-
ware. If you use Automation Builder for configuring the triggers, you will use Automation Manager
to deploy and run them in production environment. The application allows you to load triggers
from different configurations, see their live status, start/stop them and see execution details in the
log file.

You can change the view on the loaded configurations and their triggers. The last view is remem-
bered and is applied when you run Automation Manager the next time. When you enable view by
status, triggers from all open configurations that are in that status will be displayed together.
When you enable view by configurations, triggers from the selected configuration will be dis-
played together, no matter what their status is. The trigger status is color-coded in the trigger icon
for easier identification.

The displayed trigger details will change in real time as the trigger events are detected. You can see
the information, such as trigger name, type of trigger, how many events have already been proc-
essed, how many errors were detected and the time that passed since the last event. If you hover
your mouse above the number of already processed triggers, you will see the number of trigger
events waiting to be processed.

The loaded configuration is cached in memory. If you make a change in the configuration in
Automation Builder, the Automation Manager will not automatically see it. To apply the change,
you have to reload the configuration.

Loading configuration

To load the configuration, click the +Add button and browse for the configuration file ((MISX). You
can also open the configuration from the NiceWatch automation products (.MIS). The triggers from
the configuration will load in suspended state. You have to start triggers to make them active. For
more information, see topic Deploying Configuration.

Configuration reload and removal

When you update the configuration in Automation Builder and save it, the changes will not be
automatically applied in the Automation Manager. To reload the configuration, right-click the con-
figuration name, then select Reload Configuration. All triggers will be reloaded. If you have file
caching enabled, the reload will force synchronization all files used by the triggers.

Starting / stopping triggers

When you load triggers from a configuration, their default state is stopped. To start the trigger,
click the Start button in the trigger area. To stop the trigger, click the Stop button. You can also
control starting/stopping from a command-line. For more information, see topic Controlling Auto-
mation with Command-line Parameters

Handling trigger conflicts

Triggers can be in errors because of the following situations. You cannot start such trigger until you
resolve the problem.

73

o Trigger not configured correctly or completely. In this case, the trigger is not con-
figured, mandatory properties are not defined, or actions defined for this printer are not con-
figured. The same error can be caused by loading .MIS configuration from NiceWatch. You
cannot start such trigger.

o Trigger configuration overlaps with another trigger. Two triggers cannot monitor
the same event. For example, two file triggers cannot monitor the same file, two
HTTP triggers cannot accept data on the same port. If trigger configuration overlaps with
another trigger, the second trigger will not run, because the event is already captured by the
first trigger. For more information, see Log pane for that trigger.

Resetting the error status

When the trigger execution causes an error, the trigger icon will change to red color, trigger has
error status and the event details are logged to logging database. Even if all next events complete
successfully, the trigger will remain in error state until you confirm that you understand the error
and want to clear the status. To acknowledge the error, click the icon next to the error counter in
the trigger details.

Using notification pane

The notification pane is the area above the list of triggers in the Triggers tab where important mes-
sages will display. The notification area will display application status messages, such as "Trial
mode" or "Trial mode expired", or warning messages, such as "Tracing mode enabled".

Viewing Logged data

Every trigger activity is logged in the database, including trigger start/stop events, successful
execution of action and errors encountered during processing. Click the Log button to see logged
events just for the selected trigger. For more information, see topic Using Event Log.

Using Event Log

All activities in NiceLabel Automation software are logged to a database for history and trou-
bleshooting.When you click the Log button in the Triggers tab, then events for that particular
trigger will display. The log pane will display information for all events that comply with the
defined filter.

Logging data is useful for troubleshooting. If the trigger or action cannot be executed, the appli-
cation records an error description in the log file that helps you identify and resolve the problem.

The default data retention time is 7 days and is configurable in Configuration. To minimize log
database size on busy systems you might want to reduce the retention period. See options Nice-
Label Automation Configuration.

Filtering events
The configurable filters:

« Configuration and triggers. Specifies which events to display, events from the selected
trigger, or events from all triggers from the selected configuration.

e Logged period. Specifies the time frame in which the events occurred. Default is Last 5
minutes.

« Event level. Specifies the type (importance) of the events you want to display. Error is
type of event that will break the execution. Warning is type of event where errors happen,
but are configured to be ignored. Information is type of event that logs all non-erroneous
information.

74

o Filter by text. You can display all events that contain the provided string. Use this option
for troubleshooting busy triggers.

75

Performance And Feedback Options

Caching Files

To improve the time-to-first label and performance in general NiceLabel Automation supports file
caching. When you load the labels, images and database data from network shares, you might expe-
rience delays printing your labels. NiceLabel Automation must fetch all required files before the
printing process can begin.

There are two levels of caching that complement each other.

e Memory cache. The memory cache consists of keeping the already used files in memory.
The labels that have been used at least once are loaded in the memory cache. When the
trigger requests print of the same label, the label is immediately available for printing proc-
ess. The memory cache is enabled by default. The contents of the memory cache will be
cleared for a particular configuration, when you remove or reload that configuration.

o Persistent cache. The persistent cache stores data to disk and is intended for intermediate
term storage of files. Caching is managed per file object. When a file is being requested from
the network share, the service first verifies if the file is already present in cache and uses it. If
file is not in the cache, it will be fetched from the network share and cached for future use.
The cache service continuously updates the cache contents with new versions of files, in user-
configurable time intervals.

When you reload the configuration in Automation Manager or using command-line param-
eters, the cache service will verify if the newer file version exists in the network share and
use it.

Enabling Persistent Cache

To enable and configure the persistent cache, open the NiceLabel Automation Configuration, select
NiceLabel Automation Settings and enabled Cache remote files.

¢ Refresh cache files. Defines the time interval in minutes in which the files in the cache
will be synchronized with the files from their original location.

e Remove cache files when older than. Defines the time interval in days that will be
used to remove all files in cache that haven't been accessed that long.

Synchronous Print Mode

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Asynchronous Print Mode

The default NiceLabel Automation operation mode is asynchronous mode. It's a form of processing,
when trigger sends the parsed data for execution to the print process and closes a connection to the
print process. The trigger does not wait for the print process to complete executing actions. Imme-
diately after data send the trigger is ready to accept new incoming data stream. Asynchronous
mode boosts the performance and increases the number of triggers that can be processed in a time
frame. Each print process has a buffer in front of it, where the trigger feeds the print requests into.
The buffer will accommodate for the trigger spikes and make sure no data is lost. If the error occurs
during processing, it will still be logged in Automation Manager (and EPM, if you use it), but the
trigger itself is not aware about it. Because of this the trigger doesn't have the capability to report
status of print job.

76

Synchronous Print Mode

On contrary, the synchronous mode doesn't break a connection to the print process. In this mode
the trigger sends the parsed data for execution to the print process and keeps the connection estab-
lished as long as the print process is busy execution actions. When the print process completes suc-
cessfully, or if an error occurs, the trigger will be notified about the status. You can use this
information inside the actions defined in the trigger and make decision to execute some other
actions in case of errors. You can also send the print job status back to the data-issuing appli-
cation. For more information, see topic Print Job Status Feedback.

The print process is always started by the printing actions, such as Print Label, and Run Com-
mand File.

Enabling the Synchronous Print Mode

The synchronous mode is definable per-trigger. To enable synchronous mode in a trigger, do the fol-
lowing:

1. Open the properties of the trigger.
2. Go to Settings tab.
3. Select the Other option.

4. In section Feedback from the Print Engine, enable the option Supervised printing.

Print Job Status Feedback

The functionality from this topic is not all available in every NiceLabel Automation product.

The application providing data for label printing into NiceLabel Automation might expect to receive
information about print job status. The feedback can be as simple as "All OK" in case of successful
print job generation, or detailed error description in case of any problem. From performance reasons
NiceLabel Automation disables feedback possibility by default. This will ensure high-throughput
printing as trigger doesn't care about the execution of the print process. The errors will be logged to
log database, but the trigger will not handle them.

To enable the feedback support, you have to enable synchronous print mode. For more infor-
mation, see topic Synchronous Print Mode.

You can provide the status feedback in one of two methods.
The trigger sends feedback about print job status

Some triggers have built-in feedback possibility by design. When synchronous print mode is ena-
bled, the trigger is internally aware of the job status.The client can send the data into trigger, keep
the connection open and wait for the feedback. To use this feedback method, you must use the
trigger supporting it. For more information, see details of the respective trigger.

e Web Service Trigger. This trigger supports feedback by design. The WSDL document describes
details about the Web Service interface and how to enable feedback.

e HTTP Server Trigger. This trigger supports feedback by design. NiceLabel Automation will
use the standard HTTP response codes to indicate the print job status.

e TCP/IP Server Trigger. This trigger supports feedback, but not automatically. In this case you
must configure the data-providing client not to break the connection once the data is sent.
When print process completes, the next action in the list can be Send Data to TCP/IP Port

77

with the setting Reply to sender. You can feedback over the established still-open con-
nection.

The action sends the feedback about print job status

For triggers that don't natively support feedback, you can define an action that will send feedback
to some destination. In this case, the data-providing client doesn't have the connection to the
trigger opened any more. For example, you used TCP/IP trigger to capture data. The client dropped
connection immediately after it sent the data was sent, so we cannot reply over the same con-
nection. In such cases, you can use some other channel to send feedback. You can configure any of
the outbound-connectivity actions, such as Execute SQL Statement, Open Document / Program,
Send Data to HTTP, Send Data to TCP/IP Port and other. You would place such action under the
Print Label action.

If you want to send feedback only for specific status, such as "error occured”, you can use the fol-
lowing methods.

« Using condition on action. The print job status is exposed in two internal variables (Las-
tActionErrorID and LastActionErrorDesc). First one will contain the error ID or will
contain value 0 in case of no errors. The second one contains detailed error message. You can
use values of these variables in conditions on actions that you want to execute in case of
errors. For example, you would use the action Send Data to HTTP after printing and send
feedback just in case some error occurred. You would do the following:

1. Open trigger properties.

2. In ribbon group Variable, click the Internal Variables button and enable variable
LastActionErrorID.

3. Go to Actions tab.
4. Add the action Send Data to HTTP.

5. Inside action's properties expand the Show execution and error handling
options.

6. For Condition, enter the following. The action with this condition will execute only
when error occurred and LastErrorActionID contains the error ID (any value
greater than 0). By default, the conditions runs using VB Script syntax.

LastErrorActionID > 0

« Using action Try. Action Try eliminates need for coding conditions. The action provides
you with two placeholders. Placeholder Do will contain the actions that you want to run. If
any error occurs when running them, the execution will break and actions in the On error
placeholder will be executed. You would use outbound-connectivity actions in this place-
holder, to provide a print job status feedback. For more information, see topic Try.

High-availability (Failover) Cluster

The functionality from this topic is available in NiceLabel Automation Enterprise.

NiceLabel Automation supports Microsoft high-availability (failover) cluster. A failover cluster is a
group of independent computers that work together to increase the availability of label printing
through NiceLabel Automation. The clustered servers (called nodes) are connected by physical
cables and by software. If one or more of the cluster nodes fail, other nodes begin to provide service
(a process known as failover). In addition, the clustered roles are proactively monitored to verify
that they are working properly. If they are not working, they are restarted or moved to another

78

node. The clients providing data will connect to the IP address belonging to the cluster, not node
IP addresses.

To enable NiceLabel Automation for high-availability, you must do the following:
o Set up Microsoft Failover Clustering feature in your Windows Servers.
¢ Install NiceLabel Automation on each node.

o Enable the failover cluster support in NiceLabel Automation properties on each node.
Do the following:

1. Open NiceLabel Automation Configuration.
2. Select Cluster Support section.
3. Enable Failover Cluster Support.

4. Browse for the folder, located outside of both nodes, but still accessible with full access
privileges to NiceLabel Automation software. The important system files that both
nodes need will be copies to this folder.

o Configure the cluster to start NiceLabel Automation on the 2nd node in case the master node
is down.

Load-balancing Cluster

The functionality from this topic is available in NiceLabel Automation Enterprise.

NiceLabel Automation supports Microsoft load-balancing cluster. A load-balancing cluster is a
group of independent computers that work together to increase the high-availability and scalability
of label printing through NiceLabel Automation. The clustered servers (called nodes) are connected
by physical cables and by software. The incoming requests for label printing are distributed among
all nodes in a cluster. The clients providing data will connect to the IP address belonging to the
cluster, not node IP addresses.

You can use the TCP/IP-based triggers with the load-balancing cluster, this includes TCP/IP
Server Trigger, HTTP Server Trigger and Web Service Trigger.

To enable NiceLabel Automation for load-balancing, you must do the following:
e Set up Microsoft Load-balancing Clustering feature in your Windows Servers.
o Install NiceLabel Automation on each node.

o Load the same configuration files in Automation Manager on each node.

79

Understanding Data Structures

Understanding Data Structures

This chapter demonstrates the basic data structure that are frequently used in automation sce-
narios.

e Text Database

e Compound CSV
¢ Binary Files
e Legacy Data
e Command Files

¢ XML Data

Binary Files

Binary files are files that don't contain plain text only, but include binary characters, such as con-

trol codes (characters below ASCII code 32). The Configuring Unstructured Data Filter has support
for binary characters. You can use binary characters to define fields positions, and you can also use
binary characters for field values.

Typical example would be data export from legacy system, where data for each label is delimited
with a Form Feed character <rr>.

Example

In this case trigger captures the print stream. The yellow-highlighted data section must be
extracted from the stream and sent to a different printer. The filter is configured to search for <rFr>
as field-end position.

HFN%-12345X@PIL USTATUSOFF
@PJIL INFO STATUS
@PJL USTATUS DEVICE=ON

HFN%0- 12345 X EEYRN%-12345X

ANQ2AL

AN02700270

D11

H15

PE

SE

Q0001
131100000300070001-001-001
1€42055007500500001001019
1322000001502859

W

E

N - 12345 X B Y %-12345X@PIL USTATUSOFF

HNcH0-12345X

For more information, see topic Examples.

-80 -

Command Files

Command files are plain text files containing commands that will be executed one at a time from
top to bottom. NiceLabel Automation supports native command files, as well as Oracle and

SAP XML command files. For more information see topics Reference and Troubleshooting, Oracle
XML Specifications and SAP AIl XML Specifications.

Example

The label 1abel2.1bl will print to CAB A3 203DPI printer.

LABEL "label2.lbl"

SET code="12345"

SET article="FUSILLI"

SET ean="383860026501"
SET weight="1,0 kg"
PRINTER "CAB A3 203DPI"
PRINT 1

For more information, see topic Examples

Compound CSV

Compound CSV is a text file containing the CSV structure as well as multi-line header in other
structure. The contents cannot be parsed with one filter alone. You have to configure two filters, one
Configuring Structured Text Filter for fields in CSV section and one Configuring Unstructured Data
Filter for fields in the header section. In actions you would define two Use Data Filter actions and
execute both filters on the received data.

Example

The data from line 3 until the end of document has CSV structure and is parsed by Structured Text
filter. The data in first two lines doesn't have any particular structure and is parsed by Unstruc-
tured Data filter.

OPTPEPPQPFO NL004002 ;F75-TEP77319022891-001-001

OPT2 zg2lbprt.p 34.1.7.7 GOLF+ label print
"printer";"label";"Ibl_qty";"f_logo";"f_field_1";"f_field_2";"f_field_3"
"Production01";"label.lbl";"1";"logo-nicelabel.png";"ABCS1161P";"Post: ";"1"
"Production01";"label.lbl";"1";"logo-nicelabel.png";"ABCS1162P";"Post: ";"2"
"Production01";"label.Ibl";"1";"logo-nicelabel.png";"ABCS1163P";"Post: ";"3"
"Production01";"label.lbl";"1";"logo-nicelabel.png";"ABCS1164P";"Post: ";"4"
"Production01";"label.lbl";"1";"logo-nicelabel.png";"ABCS1165P";"Post: ";"5"

For more information, see topic Examples.

Legacy Data

Legacy data is unstructured or semi-structured export from legacy applications. This is not CSV or
XML structure of data, so you must use Configuring Unstructured Data Filter and define the posi-
tions of fields of interest. The filter will extract field values so you can print them on labels.

Example

There is no rule about the structure. Each field must be configured manually.

HAWLEY ANNIE ER12345678 ABC XYZ
9876543210
PRE OP 07/11/12 F 27/06/47 St. Ken Hospital 3

- 81 -

G015 134 557 564 9 A- 08/11/12 LDBS F- PB 1
G015 134 654 234 0 A- 08/11/12 LDBS F- PB 2
G015 134 324563 C A- 08/11/12 LDBS F- PB 3

Antibody Screen: Negative

Store Sample :
SAMPLE VALID FOR 24 HOURS, NO TRANSFUSION HISTORY SUPPLIED

07/11/12 B,31.0001245.E O Rh(D) Pos PHO
RLUH BT

For more information, see topic Examples.

Text Database
Text database in an alias for text file with structured fields, such as CSV (comma separated file), or

file with fixed-width fields. In either case, you can click the Import Data Structure button and
follow the wizard to import the fields.

Example

¢ File with delimited fields. The first line in the file can contain field names that filter can
import.

Product_ID;Code_EAN;Product_desc;Package
CAS006;8021228110014;CASONCELLI ALLA CARNE 250G;6
PAS501;8021228310001;BIGOLI 250G;6
PAS502GI;8021228310018; TAGLIATELLE 250G;6
PAS503GI;8021228310025; TAGLIOLINI 250G;6
PAS504;8021228310032;CAPELLI D'ANGELO 250G;6

¢ File with fixed-width fields.

CAS006 8021228110014 CASONCELLI ALLA CARNE 250G 6
PAS501 8021228310001 BIGOLI 250G 6

PAS502GI 8021228310018 TAGLIATELLE 250G 6
PAS503GI 8021228310025 TAGLIOLINI 250G 6

PAS504 8021228310032 CAPELLI D'ANGELO 250G 6

For more information, see topic Examples.

XML Data

XML stands for eXtensible Markup Language. XML tags are not predefined, you are free to define
your own tags that will describe your data. XML is designed to be self-descriptive.

XML structure is defined by elements, attributes (and their values), and text (element text).

Example

e Oracle XML. Processing of Oracle XML is built-into the software. You don't have to con-
figure any filters. For more information, see topic Oracle XML Specifications.

<?xml version="1.0" standalone="no"?>
<labels _FORMAT="case.lbl" _PRINTERNAME="Production01" _ QUANTITY="1">

<label>
<variable name="CASEID">0000000123</variable>

- 82 -

<variable name="CARTONTYPE"/>
<variable name="ORDERKEY">0000000534</variable>
<variable name="BUYERPO"/>
<variable name="ROUTE"> </variable>
<variable name="CONTAINERDETAILID">0000004212</variable>
<variable name="SERIALREFERENCE">0</variable>
<variable name="FILTERVALUE">0</variable>
<variable name="INDICATORDIGIT">0</variable>
<variable name="DATE">11/19/2012 10:59:03</variable>
</label>
</labels>

e General XML. You have to define XML filter to extract data.

<?xml version="1.0" encoding="utf-8"?>
<asx:abap xmlIns:asx="http://www.sap.com/abapxml|" version="1.0">
<asx:values>
<NICELABEL_JOB>
<TIMESTAMP>20130221100527.788134</TIMESTAMP>
<USER>PGRI</USER>
<IT_LABEL_DATA>
<LBL_NAME>goods_receipt.lbl</LBL_NAME>
<LBL_PRINTER>Production01</LBL_PRINTER>
<LBL_QUANTITY>1</LBL_QUANTITY >
<MAKTX>MASS ONE</MAKTX>
<MATNR>28345</MATNR>
<MEINS>KG</MEINS>
<WDATU>19.01.2012</WDATU>
<QUANTITY>1</QUANTITY >
<EXIDV>012345678901234560</EXIDV>
</IT_LABEL_DATA>
</NICELABEL_JOB>
</asx:values>
</asx:abap>

For more information, see topic Examples.

83

Reference And Troubleshooting

Command File Types

Command Files Specifications

Command files contain instructions for the print process and are expressed with the NiceLabel com-
mands. Commands are executed one at a time from the beginning until the end of the file. The files
support Unicode formatting, so you can include the multi-lingual contents.

Command files come in three different flavors. For more information, see topics JOB Command
File, CSV Command File and XML Command File.

CSV Command File

The commands available in the CVS command files are a subset from NiceLabel commands. You
can use the following commands: LABEL, SET, PORT, PRINTER and PRINT.

The CSV stands for Comma Separated Values. This is the text file where values are delimited by the
comma (,) character. The text file can contain Unicode value (important for multi-language data).
Each line in the CSV command file contains the commands for one label print action.

The first row in the CSV command file must contain the commands and variable names. The order
of commands and names is not important, but all records in the same data stream must follow the
same structure. Variable name : value pairs are extracted automatically and sent to the referenced
label. If the variable with the name from CVS does not exist on the label, no error message is dis-
played.

Sample CSV Command File

The sample presents the structural view on the fields that you can use in the CSV command file.

@Label,@Printer, @Quantity, @Skip,@IdenticalCopies,NumberOfSets, @Port,Product_ID,
Product_Name

labell.lbl, CAB A3 203 DPI, 100, ,,,, 100A, Product 1

label2.1bl, Zebra R-402, 20, , ,, , 200A, Product2

CSV Commands Specification

The commands in the first line of data must be expressed with at (@) character. The fields without
@ at the beginning are names of variables, and they will be extracted with their values as
name :value pairs.

e @Label. Specifies the label name to use. It's a good practice include label path and file-
name. Make sure the service user can access file. For more information, see topic Access to
Network Shared Resources. A required field.

e @Printer. Specifies the printer to use. It overrides the printer defined in the label. Make
sure the service user can access the printer. For more information, see topic Access to Net-
work Shared Resources. Optional field.

e @Quantity. Specifies the number of labels to print. Possible values: numeric value, VAR-
IABLE or UNLIMITED. For more information, see topic Print Label. A required field.

o @SKip. Specifies the number of labels to skip at the beginning of the first printed page. This
feature is useful if you want to re-use the partially printed sheet of labels. Optional field.

o @IdenticalCopies. Specifies the number of label copies should to print for each unique
label. This feature is useful when printing labels with data from database or when you use
counters, and you need label copies. Optional field.

84

o @NumberOfSets. specifies the number of times the printing process should repeat. Each
label set defines the occurrence of the printing process. Optional field.

e @Port. Specified the port name for the printer. You can override the default port as specified
in the printer driver. You can also use it to redirect printing to file. Optional field.

e Other field names. All other fields define names of variables from the label. The field con-
tents will be saved to the variable of the same name as its value.

JOB Command File

JOB command file is text file containing NiceLabel commands. The commands execute in order
from the top to bottom. The commands usually start with LABEL (to open label), then SET (to set
variable value) and finally PRINT (to print label). For more information about the available com-
mands, see topic Custom Commands.

Sample JOB Command File

This JOB file will open 1abel2.1bl, set variables and print one label. Because no PRINTER com-
mand is used to redirect printing, the label will print using the printer name as defined in the label.

LABEL "label2.lbl"

SET code="12345"

SET article="FUSILLI"

SET ean="383860026501"
SET weight="1,0 kg"
PRINT 1

XML Command File

The commands available in the XML Command files are subset of NiceLabel commands. You can
use the following commands: LOGIN, LABEL, SET, PORT, PRINTER, SESSIONEND, SES-
SIONSTART and SESSIONPRINT. The syntax differs a little bit when used in XML file.

The root element in the XML Command file is <Nice Commands>. The next element that must fol-
low is <Label>, and it specifies the label to use. To start label printing ther are two metods: print
labels normally using the element <Print Job>, or print labels in session using the element <Ses-
sion Print Job>. You can also change the printer to which the labels will print, and you can set
the variable value.

Sample XML Command File

The sample presents the structural view on the elements and their attributes as you can use them
in the XML command file.

<nice_commands>
<label name="labell.lbl">

<session_print_job printer="CAB A3 203DPI" skip=0 job_name="job name 1" print_
to_file="filename 1">
<session quantity="10">
<variable name="variable name 1" >variable value 1</variable>
</session>
</session_print_job>

<print_job printer="Zebra R-402"” quantity="10" skip=0 identical_copies=1 number_
of_sets=1 job_name="job name 2" print_to_file="filename 2">
<variable name="variablel" >1</variable>
<variable name="variable2" >2</variable>
<variable name="variable3" >3</variable>
</print_job>

85

</label>
</nice_commands>

XML Commands Specification

This section contains tje description of the XML Command file structure. There are several elements
that contain attributes. Some attributes are required, other are optional. Some attributes can occupy
pre-defined values only, for other you can specify the custom values.

e <Nice_Commands>. This is a root element.

o <Label>. Specifies the label file to open. If the label is already opened, it won't be opened
again. The label file must be accessible from this computer. For more information, see topic
Access to Network Shared Resources. This element can occur several times within the com-
mand file.

o Name. This attribute contains the label name. You can include the path to the label
name. Required element.

e <Print_Job>. The element that unions the commands for printing labels. This element can
occur several times within the command file.

o Printer. Use this attribute to override the printer defined in the label. The printer
must be accessible from this computer. For more information, see topic Access to Net-
work Shared Resources. Optional.

e Quantity. Use this attribute to specify the number of labels to print. Possible values:
numeric value, VARIABLE or UNLIMITED. For more information on parameters, see
topic Print Label. Required.

o SKkip. Use this attribute to specify how many labels to skip at the beginning. This fea-
ture is useful if you print sheet of labels to laser printer, but the sheet is partial
already printed. more information, see topic Print Label. Optional.

« Job_name. Use this attribute to specify the name of your job file. The specified name
is visible in the print spooler. For more information, see topic Set Print Job Name.
Optional.

o Print_to_file. Use this attribute to specify the file name where you want to save the
printer commands. For more information, see topic Redirect Printing to File. Optional.

« Identical_copies. use this attribute to specify the number of copies you need for
each label. For more information, see topic Print Label. Optional.

e <Session_Print_Job>. The element that unions commands for printing labels. It con-
siders session print rules. You can use this element several times within the command file.
For available attributes lookup the attributes for the element <Print Job>. All of them are
valid, you only cannot use the quantity attribute. See the description of the element Session
to find out how to specify label quantity in session printing.

e <Variable>. The element that sets the value of variables on the label. This element can
occur several times within the command file.

o Name. The attribute contains the variable name. Required.

XML Schema Definition (XSD) for XML Command File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd" elementFormDefaul-
t="qualified" xmIns="http://tempuri.org/XMLSchema.xsd" xmlIns: mstns="http://tempuri-
.org/XMLSchema.xsd" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="nice_commands">
<xs:complexType>
<Xxs:sequence>
<xs:element name="label" maxOccurs="unbounded" minOccurs="1">

- 86 -

<xs:complexType>
<Xs:sequence>
<xs:element name="print_job" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="database" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="table" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="variable" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="quantity" type="xs:string" use="required" />
<xs:attribute name="printer" type="xs:string" use="optional" />
<xs:attribute name="skip" type="xs:integer" use="optional" />
<xs:attribute name="identical_copies" type="xs:integer" use="optional" />
<xs:attribute name="number_of_sets" type="xs:integer" use="optional" />
<xs:attribute name="job_name" type="xs:string" use="optional" />
<xs:attribute name="print_to_file" type="xs:string" use="optional" />
<xs:attribute name="print_to_file_
append" type="xs:boolean" use="optional" />
<xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
</xs:complexType>
</xs:element>
<xs:element name="session_print_
job" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="database" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="table" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>

87

</xs:element>
<xs:element name="session" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="variable" minOccurs="0" maxOccurs="unbounde-
d">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute name="quantity" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute name="printer" type="xs:string" use="optional" />
<xs:attribute name="skip" type="xs:integer" use="optional" />
<xs:attribute name="job_name" type="xs:string" use="optional" />
<xs:attribute name="print_to_file" type="xs:string" use="optional" />
<xs:attribute name="print_to_file_
append" type="xs:boolean" use="optional" />
<xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="close" type="xs:boolean" use="required" />
<xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="quit" type="xs:boolean" use="required" />
</xs:complexType>
</xs:element>
</xs:schema>

Oracle XML Specifications

Oracle defined the XML format so that the XML contents can be understood, parsed and then
printed as a label. A XML Document Type Definition (DTD) defines the XML tags that will be used
in the XML file. Oracle will generate XML files according to this DTD and the 3rd party software
will translate the XML according to this DTD.

To execute such command file, use the Run Oracle XML Command File action.
XML DTD

The following is the XML DTD that is used in forming the XML for both the synchronous and asyn-
chronous XML formats, it defines the elements that will be used in the XML file, a list of their attrib-
utes and the next level elements.

<!ELEMENT labels (label)*>

<!ATTLIST labels _FORMAT CDATA #IMPLIED>
<!ATTLIST labels _JOBNAME CDATA #IMPLIED>
<!IATTLIST labels _QUANTITY CDATA #IMPLIED>

<!ATTLIST labels _PRINTERNAME CDATA #IMPLIED>

- 88 -

<!ELEMENT label (variable)*>

<!ATTLIST label _FORMAT CDATA #IMPLIED>
<!ATTLIST label _JOBNAME CDATA #IMPLIED>
<!ATTLIST label _QUANTITY CDATA #IMPLIED>
<!ATTLIST label _PRINTERNAME CDATA #IMPLIED>
<!ELEMENT variable (# PCDATA)>

<IATTLIST variable name CDATA #IMPLIED>

Sample Oracle XML

This is the Oracle XML providing data for one label (there is just one <1abel> element).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE labels SYSTEM "label.dtd" >
<labels _FORMAT ="Serial.Ibl" _QUANTITY="1" _PRINTERNAME="" _JOBNAME="Serial">
<label>
<variable name= "item">0 Ring</variable>
<variable name= "revision">V1</variable>
<variable name= "lot">123</variable>
<variable name= "serial_number">12345</variable>
<variable name= "lot_status">123</variable>
<variable name= "serial_number_status">Active</variable>
<variable name= "organization">A1l</variable>
</label>

</labels>

When executing this sample Oracle XML file the label serial.1bl will print with the following
variable values.

Variable name Variable value
item O Ring
revision Vi

lot 123
serial_number 12345
lot_status 123
serial_number_status Active
organization A1

The label will print in 1 copy, with the spooler jobname Serial. The printer name is not specified
in the XML file, so the label will print to the printer as defined in the label template.

SAP All XML Specifications

NiceLabel Automation can present itself as RFID device controller, capable of encoding RFID tags
and printing labels. For more information about SAP AIl XML specifications, see the document
SAP Auto-ID Infrastructure Device Controller Interface from SAP web page.

89

To execute such command file, use the Run SAP AIl XML Command File action.

Sample SAP AIl XML

This is the SAP AIl XML providing data for one label (there is just one <label> element).

<?xml version="1.0" encoding="UTF-8"?>

<Command xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:no-
NamespaceSchemalocation="Command.xsd">

<WriteTagData readerID="NICEWATCH DEVICE ID">
<Item>

<FieldList format="c:\SAP Demo\SAP label.lbl" jobName="Writer_
Device20040929165746" quantity="1">

<Field name="EPC">00037000657330</Field>
<Field name="EPC_TYPE">SGTIN-96</Field>
<Field name="EPC_URN">urn:autoid:tag:sgtin:3.5.0037000.065774.8</Field>
<Field name="PRODUCT">Product</Field >
<Field name="PRODUCT_DESCRIPTION">Product description</Field>
</FieldList>

</Item>

</WriteTagData>

</Command>

When executing this sample SAP AT XML file the label SAP 1abel.1bl will print with the fol-
lowing variable values.

Variable name Variable value

EPC 00037000657330

EPC_TYPE SGTIN-96

EPC urn:autoid:tag:sgtin:3.5.0037000.065774.8
PRODUCT Product

PRODUCT__DESCRIPTION Product description

The label will print in 1 copy, with the spooler jobname Writer Device2004092916574. The
printer name is not specified in the XML file, so the label will print to the printer as defined in the
label template.

Custom Commands

Using Custom Commands

NiceLabel commands are used in command files to control label printing. NiceLabel Automation
executes the command within command files from top to bottom. For more information, see topic
Reference and Troubleshooting.

NiceLabel Commands Specification

COMMENT

90

When developing command file it is good practice to document your commands. This will help you
decode what the script really performs, when you will look at the code after some time. Use sem-
icolon (;) on the beginning of the line. Everything following the semicolon will be treated as com-
ment and will not be processed.

CLEARVARIABLEVALUES
CLEARVARIABLEVALUES

This command resets variable values to their default values.

CREATEFILE
CREATEFILE <file name> [, <contents>]

This command will create a text file. You can use it to signal to some 3rd party application that
print process has begun or has ended, dependent on the location where you put the command.

DELETEFILE
DELETEFILE <file name>

Deletes the specified file.
IGNOREERROR

IGNOREERROR

Specifies that the error occurring in the JOB file will not terminate the print process, if the fol-
lowing errors occur:

¢ Incorrect variable name is used

o Incorrect value is sent to the variable

o Label does not exist / is not accessible
o Printer does not exist / is not accessible

LABEL
LABEL <label name> [<printer_name>]

The command opens the label to print. If the label is already loaded, it will not be re-opened. You
can include the path name. Enclose the label name in double quotes, if the name or path contains
spaces. Use UNC notation for network files. For more information about file names, see topic Access
to Network Shared Resources.

The PrinterName (when provided) sets the printer, for which the label will be initially opened. If
non existing printer is provided, the command will raise an error.

MESSAGEBOX
MESSAGEBOX <message> [,<caption>]

Logs the custom message into the trigger log. If the message contains space characters or commas,
you have to enclose the text in double quotes ().

PORT

PORT <file name> [, APPEND]

91

This command overrides port as defined in the printer driver and redirect printing to a file. If file
path or file name contain spaces, enclose the value in double quotes (").

The parameter APPEND is optional. By default the file will be overwritten. Use this parameter to
append data into the existing file.

Once you use a command PORT in the JOB file it will be valid until the next PORT command, or
until the end of file (whichever comes first). If you use PRINTER command after the PORT com-
mand has been executed, the PORT setting will overwrite the port defined for the selected printer. If
you want to use the actual port that is defined for the selected printer, you have to use another
PORT command with empty value, such as PORT = "".

PRINT

PRINT <quantity> [,<skip> [,<identical label copies> [,number of label sets]]]

This command starts the print process.
¢ Quantity. Specifies the number of labels to print.
e <number>. Specified number of labels will print.

e VARIABLE. Specifies that some label variable is defined as variable quantity and
will contain the number labels to print. The label will determine how many labels to
print.

e UNLIMITED. If you use a database to acquire values for objects, unlimited printing
will print as many labels as there are record in the database. If you do not use a data-
base, the maximum number of labels that thermal printer internally supports will be
printed.

o SKip. Specifies the number of labels you want to skip on the first page. The parameter is
used for printing labels on sheets of paper. When the part of the page has already been used,
you can reuse the same sheet by shifting the start location of the first label.

o Identical label copies. Specifies how many copies of the same label must print.

« Number of label sets. Specifies the number of times the whole printing process should
repeat itself.

Make sure the quantity values are provided as the numeric value, not string value. Do not
enclose the value in the double quotes.

PRINTER
PRINTER <printer name>

This command overrides the printer as defined in the label file. If the printer name contains space
characters, you have to enclose it in double quotes (").

Use the printer name as displayed in the status line in the label design application. Printer names
are usually the same as the printer names in Printers and Faxes from Control Panel, but not
always. When you are using network printers, you might see the name displayed in syntax
\\server\share.

PRINTJOBNAME
PRINTJOBNAME

This command specifies the print job name you will see in Windows Spooler. If name contains
space characters or commas, you have to enclose the value in double quotes (").

SESSIONEND

92

SESSIONEND

This command closes print stream. Also see SESSIONSTART.
SESSIONPRINT

SESSIONPRINT <quantity> [,<skip>]

This command prints the currently referenced label and adds it into the currently open session-
print stream. You can use multiple SESSIONPRINT commands one after another and join the ref-
erenced labels in single print stream. The stream will not close until you close it with the command
SESSIONEND. The meaning of quantity and skip parameters is the same as with NiceCommand
PRINT. Also see SESSIONSTART.

e Quantity. Specifies the number of labels to print.

o Skip. Specifies the number of labels you want to skip on the first page. The parameter is
used for printing labels on sheets of paper. When the part of the page has already been used,
you can reuse the same sheet by shifting the start location of the first label.

SESSIONSTART
SESSIONSTART

This command initiates the session-print type of printing.

The three session-print-related commands (SESSIONSTART, SESSIONPRINT,
SESSIONEND) are used together. When you use command PRINT, every label data will be sent to
the printer in a separate print job. If you want to join label data for multiple labels into print
stream, you should use the sessionprint commands. You must start with the command SES-
SIONSTART, followed with any number of SESSIONPRINT commands and in the end the command
SESSIONEND.

Use these commands to optimize label printing process. Printing labels coming from one print job
is much faster than printing labels from a bunch of print jobs.

There some rules you have to follow so the session print will not break.
e You cannot change the label within a session.
¢ You cannot change the printer within a session

e You must set values for all variables from the label within a session, even if some of the var-
iables will have empty values

SET
SET <name>=<value> [,<step> [,<number or repetitions>1]]

This command assigns the variable name with value. The variable must be defined on the label, or
error will be raised. If the variable isn't on the label, an error will occur. Step and number of
repetitions are parameters for counter variables. These parameters specify the counter increment
and the number labels before the counter changes value.

If value contains spaces or comma characters, you must enclose the text in double quote ("). Also
see TEXTQUALIFIER.

If you want to assign multi-line value, use \r\n to encode newline character. \r is replaced with
CR (Carriage Return) and \n is replaced with LF (Line Feed).

93

Be careful when setting values to variables that provide data for pictures on the label, as backslash
characters might be replaced with some other characters. For example, if you assign a value "c:\My
Pictures\raw.jpg" to the variable, the "\r" will be replaced with CR character.

SETPRINTPARAM
SETPRINTPARAM <paramname> = <value>

This command allows you to set fine-tune print parameters just before printing. The supported
parameter names (paramname) are:

o PAPERBIN. Specifies the tray that contains label media. If the printer is equipped with
more than just one paper / label tray, you can control which is used for printing. The name
of the tray should be acquired from the printer driver.

o PRINTSPEED. Specifies the printing speed. The acceptable values vary from one printer to
the other. See printer's manuals for exact range of values.

o PRINTDARKNESS. Specifies the printing darkness / contrast. The acceptable values vary
from one printer to the other. See printer's manuals for exact range of values.

o PRINTOFFSETX. Specifies the left offset for all printing objects. The value for parameter
must be numeric, positive or negative, in dots.

o PRINTOFFSETY. Specifies the top offset for all printing objects. The value for parameter
must be numeric, positive or negative, in dots.

TEXTQUALIFIER
TEXTQUALIFIER <character>

Text-qualifier is the character that embeds data value that is assigned to a variable. Whenever data
value includes space characters, it must be included with text-qualifiers. The default text qualifier is
a double quote character ("). Because double quote character is used as shortcut for inch unit of
measure, sometimes it is difficult to pass the data with inch marks in the JOB files. You can use
two double quotes to encode one double quote, or use TEXTQUALIFIER.

Example

TEXTQUALIFIER %
SET Variable = %EPAK 12"X10 7/32"%

Access To Network Shared Resources
This topic definea best practice steps when using network shared resources.

+ User privileges for service mode. The execution component of NiceLabel Automation
runs in service mode under specified user account inheriting access privileges of that
account. For NiceLabel Automation to be able to open label files and user printer drivers, the
associated user account must have granted the same privileges. For more information, see
topic Running in Service Mode.

¢ UNC notation for network shares. When accessing the file on a network drive, make
sure to use the UNC naming convention and not the mapped drive letters. If the file is acces-
sible as G:\Labels\label.1lbl, refer to it in UNC notation as \\server\shar-
e\Labels\label.1lbl if G: drive is mapped to \\server\share. Use UNC notation when
referencing any network file, such as trigger file or label file in Open Label action. The same
rule applies, when you use files in Document Storage inside NiceLabel Enterprise Manager
ovwe WebDAV. Instead of http://servername:8080/1label.1lbl you must use
UNC notation as \\servername@8080\DaviWWiWRoot\label.lbl.

94

¢ Printer drivers availability. To print labels to network shared printer, you will have to
make the printer driver available on the server where NiceLabel Automation is installed on.
You can install the printer driver manually and change is port to match the printer socket
(IP address and port number), or you can connect to the printer on some printer server. In
case the service user account must have access to the printer driver.

Changing Multi-threaded Printing Defaults

Every NiceLabel Automation product can take advantage of multiple cores inside the processor.
Each core will be used to run a print process. Half of the number of cores are used for processing
concurrent normal threads and the other half for processing concurrent session-print threads.

Under normal circumstances you never have to change the default settings. Make sure you know
what you are doing by changing these defaults.

To modify the number of the concurrent print threads, do the following:

1. Open file product.config in text editor.
The file is

c:\ProgramData\EuroPlus\NiceLabel Automation\system.net\product.config

2. Change the values for elements MaxConcurrentPrintProcesses and Max-
ConcurrentSessionPrintProcesses.

<configuration>

<IntegrationService>
<MaxConcurrentPrintProcesses>1</MaxConcurrentPrintProcesses>
<MaxConcurrentSessionPrintProcesses>1</MaxConcurrentSessionPrintProcesses>
</IntegrationService>

</configuration>

3. Save the file. NiceLabel Automation will automatically update the service with new number
of print threads.

Session Print

Session-print enables when you print the same label to the same printer and are printing many
labels. All labels will be sent to the printer in one print job. On the other hand is non-session print-
ing, when each label is sent to the printer as a separate print job. From performance point of view
the session print makes a better choice. NiceLabel Automation automatically determines the print-
ing mode from the trigger configuration .

Controlling Automation With Command-line Parameters

NiceLabel Automation service can be controlled with the command-line parameters. The general
syntax to use command-line parameters is as follows.

NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName] [/SHOWUI]

Note: include the full path to the configuration name, don't use the file name alone.

To ADD configuration

The provided configuration will be loaded into service. No trigger will be started. If you include the
/SHOWUT parameter, Automation Manager UI will be started.

NiceLabelAutomationManager.exe ADD c:\Project\configuration.MISX /SHOWUI

95

To RELOAD configuration

The provided configuration will be reloaded into service. The running status of all triggers will be
preserved. Reloading the configuration forces the refresh of all files cached for this configuration.
For more information, see topic Caching Files. If you include the /SHOWUI parameter, Automation
Manager UI will be started.

NiceLabelAutomationManager.exe RELOAD c:\Project\configuration.MISX /SHOWUI

To REMOVE configuration

The provided configuration and all its triggers will be unloaded from service.
NiceLabelAutomationManager.exe REMOVE c:\Project\configuration.MISX

To START a trigger

The referenced trigger will be started in the already loaded configuration.
NiceLabelAutomationManager.exe START c:\Project\configuration.MISX CSVTrigger

To STOP a trigger

The referenced trigger will be stopped in the already loaded configuration.
NiceLabelAutomationManager.exe STOP c:\Project\configuration.MISX CSVTrigger

Status Codes

Status codes provide the feedback of command-line execution. To enable the status codes return,
run the use the following command-line syntax.

start /wait NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName]
[/SHOWUI]

The status codes is captured in the system variable errorlevel. To see the status code, execute
the following command.

echo %errorlevel%

List if status codes:

Status Code Description

0 No error occured

100 Configuration file name not found
101 Configuration cannot be loaded
200 Trigger not found

201 Trigger cannot start

Entering Special Characters

Special characters or control codes are binary characters that don't have the representation on the
keyboard. You cannot type them is as a normal characters, they must be encoded with a special syn-
tax. You would need to use such characters, when communicating with serial-port devices, receiv-
ing data on TCP/IP port, or working with the binary files, such as print files.

There are two methods how to enter the special characters:

96

« Entering characters manually. You can enter special characters directly by using the syn-
tax of <special character abbreviation>, such as <FF> for FormFeed, or <CR> for
CarriageReturn. For more information, see topic List of Control Codes.

o Inserting characters from the list. The objects that support special characters as their
contents display an arrow button on their right side. The button contains a shortcut to all
available special characters. When you select a character in the list, it is added into the con-
tents. For more information, see topic Using Compound Values.

List Of Control Codes

ASCII Code Abbreviation
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS

9 HT
10 LF

11 VT

12 FF

13 CR
14 SO

15 SI

16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FS

29 GS
30 RS

31 US
188 FNC1
189 FNC2
190 FNC3
191 FNC4

Description

Start of Heading

Start of Text

End of Text

End of Transmission
Enquiry
Acknowledgement

Bell

Back Space

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift Out

Shift In

Data Link Escape
XON - Device Control 1
Device Control 2

XOFF - Device Control 3
Device Control 4
Negative Acknowledgement
Synchronous Idle

End Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator

Unit Separator
Function Code 1
Function Code 2
Function Code 3
Function Code 4

97

Offline Mode

The functionality from this topic is available in NiceLabel Automation Pro and NiceLabel
Automation Enterprise.

Offline mode is an emergency mode that automatically enables when the licensing server cannot be
contacted. Automation Manager will display the message in the information pane and log the event
in the Windows Application Event log. NiceLabel Automation running in offline mode will continue
to process triggers for up to 24 hours. You will have to restore a connection to the licensing server
within 24 hours to ensure uninterrupted operation. Information about printing activities will be
cached locally and synchronized with the server, once the connection is re-established.

The offline mode is only available, when you purchase the product and activate it through the
Enterprise Print Manager (available with the Management products).

Running In Service Mode

NiceLabel Automation runs as Windows service and is designed not to require any user inter-
vention when processing data and executing actions. The service is configured to start when the
operating system is booted and will run in the background as long as Windows is running. Nice-
Label Automation will remember the list of all loaded configurations and active triggers. The last-
known state is automatically restored when the server restarts.

The service runs with the privileges of the user account selected during the installation. The service
will inherit all access permissions of that user account, including access to network shared
resources, such as network drives and printer drivers. Use the account of some existing user with
sufficient privileges, or even better, create a dedicate account just for NiceLabel Automation.

While possible it is considered a bad practice to run the service under the Local System Account.
This is a predefined local Windows account with extensive privileges on the local computer, but
is usually without privileges to access network resources. NiceLabel Automation also requires the
full access to the account's $temp% folder, which might not be available for Local System
Account.

You can manage the service by launching the Services from the Windows Control Panel. In modern
Windows operating system you can also manage the service in the Services tab in Windows Task
Manager. You would use Services to execute tasks such as:

o Start and stop the service
o Change the account under which the service logs on
Service Mode: x86 vs x64

NiceLabel Automation can run on x86 and x64 systems natively. The execution mode is auto-deter-
mined by the Windows operating system. NiceLabel Automation will run in x64 mode on Windows
x64 and will run in x86 mode on Windows x86. Running as x64 process ensures direct com-
munication with the 64-bit printer spooler service on Windows x64 builds. This eliminates the infa-
mous problems with the SPLWOWG64.EXE, which allows 32-bit applications to use 64-bit printer
spooler service.

Forcing x86 operation mode on Windows x64

Windows x64 does not provide the 64-bit database driver subsystem for Microsoft Access. You can-
not use Access database from x64 application. For this reason you might want to run NiceLabel
Automation in x86 mode, or install it on Windoww x86 system.

To force NiceLabel Automation into x86 mode on Windows x64, do the following:

98

e Select Start -> Run.
o Typein regedit and press Enter
o Navigate to the key

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\services\NiceLabelAutomationService

o Change the filename to NiceLabelAutomationService.x86.exe, keeping the existing
path.

e Restart NiceLabel Automation service.

It is not recommended to change the NiceLabel Automation service mode. Make sure you
execute extensive trigger testing prior to deployment in production environment.

Tips And Tricks For Using Variables In Actions

When you use variables in the actions within NiceLabel Automation, follow the next rec-
ommendations.

« Enclose variables in square brackets. When you have variables with spaces in their
names and refer to variables in actions, such as Execute SQL Statement or Execute Script
enclose the variables in square brackets, like [Product Name]. You would also use square
brackets, if variable names are the same as reserved names, e.g. in the SQL Statement.

¢ Place colon in front of the variable name. To refer to the variable in the Execute SQL
Statement statement or in a Database Trigger you have to place a colon (:) in front of var-
iable name, such as : [Product ID]. The SQL parser will understood it as "variable value".

o Convert values to integer for computation. When you want to execute some numeric
calculation with the variables, make sure that you convert the variable value into integer.
Defining the variable as numerical only limits the characters accepted for value, but doesn't
change the variable type. NiceLabel Automation treats all variables of string type. For exam-
ple, you would use function CInt () in VB Secript.

¢ Set default / startup values for scripts. When you use variables in Execute Script
action, make sure they have some default value, or the script checking might fail. You can
define default values in variable properties, or inside the script (and remove them after you
have tested the script).

Tracing Mode

By default, NiceLabel Automation logs events into the log database. This includes higher-level infor-
mation, such as logging of action execution, logging of filter execution and logging of trigger status
updates. For more information, see topic Event Logging Options.

However, the default logging doesn't log the deep under-the-hood executions. When the trou-
bleshooting is needed on the lower-level of the code execution, the tracing mode must be enabled.
In this mode NiceLabel Automation logs the details about all internal executions that take place
during trigger processing. Tracing mode should only be enabled during troubleshooting to collect
logs and then disabled to enable normal operation.

Tracing mode will slow down the processing and should only be used when instructed so by the
NiceLabel technical support team.

99

Examples

Examples

NiceLabel Automation ships with examples that describe the configuration procedure for frequently
used data structures. You can quickly learn how to configure filters to extract data from CVS files,
from legacy data exports, from printers files, from XML documents, from binary files, just to name
a few.

The samples are installed in the following folder, dependent on the system, you use.
e If you have Windows XP
%ALLUSERSPROFILE%\Documents\NiceLabel Samples\Automation
which would resolve to

C:\Documents and Settings\All Users\Documents\NiceLabel Sam-
ples\Automation

e If you have Windows 7 / Windows Server 2008 and above

%PUBLIC%\Documents\NiceLabel Samples\Automation

which would resolve to
c:\Users\Public\Documents\NiceLabel Samples\Automation

- 100 -

Technical Support

Online Support

You can find the latest builds, updates, workarounds for problems and Frequently Asked Questions
(FAQ) on the product web site at www.nicelabel.com.

For more information please refer to:

o Knowledge base: http://kb.nicelabel.com

e NiceLabel Support: http://www.nicelabel.com/support

e NiceLabel Tutorials: www.nicelabel.com/Learning-center/Tutorials

e NiceLabel Forums: forums.nicelabel.com

- 101 -

http://kb.nicelabel.com/
http://www.nicelabel.com/support
http://www.nicelabel.com/Learning-center/Tutorials
http://www.nicelabel.com/Learning-center/Tutorials
http://forums.nicelabel.com/

	Table of Contents
	Welcome to NiceLabel Automation
	Typographical Conventions
	Setting Up Application
	System Requirements
	Installation
	Activation
	Trial Mode

	Understanding Filters
	Understanding Filters
	Configuring Structured Text Filter
	Configuring Unstructured Data Filter
	Configuring XML filter
	Setting Label and Printer Names from Input Data

	Configuring Triggers
	Triggers
	Defining Triggers
	Using Variables
	Using Actions
	Testing Triggers
	Protecting Trigger Configuration

	Running and Managing Triggers
	Deploying Configuration
	Event Logging Options
	Managing Triggers
	Using Event Log

	Performance and Feedback Options
	Caching Files
	Synchronous Print Mode
	Print Job Status Feedback
	High-availability (Failover) Cluster
	Load-balancing Cluster

	Understanding Data Structures
	Understanding Data Structures
	Binary Files
	Command Files
	Compound CSV
	Legacy Data
	Text Database
	XML Data

	Reference and Troubleshooting
	Command File Types
	Custom Commands
	Access to Network Shared Resources
	Changing Multi-threaded Printing Defaults
	Controlling Automation with Command-line Parameters
	Entering Special Characters
	List of Control Codes
	Offline Mode
	Running in Service Mode
	Tips and Tricks for Using Variables in Actions
	Tracing Mode

	Examples
	Examples

	Technical Support
	Online Support

	Bookmarks
	Trigger_Types
	Internal Variables
	Try

